T T T T TN N T T O A O I R O R T T R O A T A T R O O SO WO v i Aot At et VA AR ,.‘.'."

. » \ “‘:j w"ﬁ- ">

NAVAL POSTGRADUATE SCHOOL i
Monterey , California

DOARAR
s‘
.
o

4“.
o

ey
P i
] g{} y

AD-A197 507

,\~ . 9".‘;’))
.\ . X'\\!,

TR
DN A
%)

DESIGN, IMPLEMENTATION AND EVALUATION

{ OF AN ABSTRACT PROGRAMMING AND :?"*‘ \

COMMUNICATIONS INTERFACE FOR A PN
NETWORK OF TRANSPUTERS e

Ny g

o
Gregory R. Bryant T
June 1988 -

-

'»
.
-

1 hesis Advisor: Uno R. Kodres

=9

s

» ' I"fl

............

WS TN RTINW d

Unclagsified
SECURITY CLASSIFICATION OF THIS PAGE

R RS VAT RCTRTOA

REPORT DOCUMENTATION PAGE

Ta. REPORT SECURITY CLASSIFICATION
Unclassified

b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION : DOWNGRADING SCHEDULE

Distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6b OFFICE SYMBOL
(If applicable)
Code 52

6a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADORESS (City, State, and ZIP Code}

Monterey, California 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, California

93943~5000

8b. OFFICE SYMBOL
(If applicable)

8a. NAME QF FUNDING / SPONSORING
ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMVBER

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

TASK

PROGRAM PROJECT
NO. NO

ELEMENT NO

WORK UNIT
ACCESSION NO.

11 TITLE (Include Security Classification)

Interface for a Network of Transputers.

Design, Implementation and Evaluation of an Abstract Programming and Communications

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED

FROM TO

Master's Thesis

14, DATE OF REPORT (Year, Month, Day)

1988 June 176

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

The views in expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

17. COSAT! CODES

FIELD GROUP SUB-GROUP

Processes

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Distributed computing; Transputer; OCCAM; Network;
Event Counts and Sequencers; Communicating Sequential

network of Transputers.
communication and synchronization.
for communication and synchronization.

19. ABSTRACT (Continue on reverse if necessary and rdentify by block number)
~This thesis presents the design, implementation and evaluation of two abstracted

programming and communication interfaces for developing distributed programs on a

One interface uses a shared memory model for interprocess

The other interface uses a message passing model
The programming interfaces allow development

of distributed programs that are independent of the physical configuration of a network.
This thesis also presents an evaluation of Transputer performance with a particular
emphasis on the interaction of computation and inter-Transputer communication.

— -
) L

2

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED [SAME aS RPT O oTic USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Professor Uno R. Kodres

22b TELEPHONE (Inc/lude Area Code)
(408) 646-2197

22¢ OFFICE SYMBOL
Code 52Kr

DD FORM 1473, 84 MmaR

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

& U.5. Government Printing Office: 1986—§06-24.

Approved for public release: distribution is unlimited.

Design, Implementation and Evaluation of an Abstract Programming
and Communication Interface for a Network of Transputers

by

Gregory R. Bryant
Lieutenant Commander, United States Navy
B.S.E.E., University of New Mexico, 1975

Submitted in partia! fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author: Gfeq(\}“% ’\2’% L “L“;;& :

é\regory R. Bif%nt

Approved by: Lo /2 /AO%

Uno Kodres The51s Advisor
/ /[Z // / // Z ,:/'f:'\/

Richard A. Adams, Second Reader

20 P Tliee

Robert B. McGhee,

Acting Chaxrman \[@e/ngof Computer Science

:/(/L'\’ L —

/ rﬁes M. Fremgen,
Acting De:y/()f Information apd Policy Sciences

[/ /o

N————

ii

\'"\-:,‘\'W:.\" .V L 4 V. -\|- - .\'\ *q\ \ .-.-‘-\ \l\ - ’-~.~' -\-\1.--_:: \ \ ‘n\ \q #\-xr 4\ - \ \ \ _' "_

Lt Kl X BN a X a s Al V.9, . o

.:- ﬁfﬁ ‘r"’

W g

Ea e

SRyt vy ey
A

Ay

4 -.;- ,r'r"",""‘.

L

w

T R R R W L T R T S S T I D X R o O R Y Y O O Y X R Y IGO0 WLV

©
-
!

™,

s
;
’
&g
]
*e
Q
ABSTRACT =
!
This thesis presents the design, implementation and evaluation of 2
v
two abstracted programming and communication interfaces for devel- o
oping distributed programs on a network of Transputers. One inter-
face uses a shared memory model for interprocess communication and -.
synchronization. The other interface uses a message passing model '
for communication and synchronization. The programming interfaces ,i
allow development of distributed programs that are independent of iy
the physical configuration of a network. This thesis also presents an)
r.8:
evaluation of Transputer performance with a particular emphasis on .
~
o
the interaction of computation and inter-Transputer communication. N
W9
e
N
Acaession For)
b - - — i a e = 2%
NTIS GRA&I)
DTIC TAB <
Unannounced O 'nf
Justifioation__ﬁ A)
)
t
By N
Distribution/ ,
Availability Codes]
“Avafl and/or N
Dist Special]
""
Al 3
o
R
]
-
e
-
'-('
i
N
St
",

s
P
y
N}
| 4
"
Mg
2
i
THESIS DISCLAIMER B0
IN‘
N,
The reader is cautioned that computer programs developed in :?‘
this research may not have been exercised for all cases of interest. ~ ‘.';',
While every effort has been made within the time available to ensure
o
that the programs are free of computational and logic errors, they ;}
A%
cannot be considered validated. Any application of these programs N :
without additional verification is at the risk of the user. ,.
el
Many terms used in this thesis are registered trademarks of N
oy
commercial products. Rather than attempting to cite each individual NG
:L- J
occurrence of a trademark, all registered trademarks appearing in this !'_
thesis are listed below the firm holding the trademark: : '
W} .l'
INMOS Limited, Bristol, United Kingdom: o
Transputer »
OoCcCAM :'E
IMS T414 :‘E}‘
IMS T800 Ty
Transputer Development System (TDS) g‘
Relational Technology Inc., Alameda, California: o
Ingres 3
R
\.'."
3
Y
»
N
S |
S
At
iv "
™
wh
.:
>
7

T
£

ENAC AZ RN N AR AT AL LN A OGN A e o

l.‘." £°9.0-0 10" 1) 40 40 Rug' A1 TR AT LR R ALY 0 B RN S TaY 400 BVa G YL 0 440 N gat B06 120 200 040 S0¥ it §e® Via® Ua* 100 a¥h ghh-aTR ath p¥Y ittt ';:i
s %
]
U
A
¥
TABLE OF CONTENTS ;‘
L INTRODUCTION. ...oooooooooeooeoee oo oo e eee e ee e eee oo e eemeeeseesa 1 ;:
PR Vo) (o):3010) 1 YOO 1 W)
B. THE TRANSPUTER ..oovoeoereeoseeosscosessseoesssssssessssssesssssessssmsesssesssssemeess oo 2 e
1 »)
, C. ABSTRACT PROGRAMMING INTERFACES ..o 2 o
p C~
D. AVAILABLE HARDWARE AND SOFTWAREoooooooeeeeeeeeoeeoeseoss oo 3 .
4]
\J
E. THESIS ORGANIZATIONcciurmsssssnnssesassssssssessesssnssssenecssannesseases 3)
4
| I THE TRANSPUTER woooooooeooeoeeooeeoeeoeeoeoeoeeeeeeeeeeeeeeoeeeeeeeeee e seeeeeeeeeeeeeoe 5 =
F-NER 07 03 A T4 1 03NS 5 ;:E;
3
)
5. B. COMMUNICATING SEQUENTIAL PROCESSES ..voooooooeoreresron. 5 X
S C. TRANSPUTER ARCHITECTURE woovoeeooeoeseoosesessssssesseseeesssssesseses e 8 W
>
' L. PIOCESSO . vureeeeeeeeeeeeseteeesessasssssssssssssseseserssssssssesssssssssssesssssesssesesesesseans 8 X
A INSIIUCLION S .eiviiicreceeerecrecrsnrreeseevessensessesesssanseness seasassnnene 10 [
\ D, CONCUITENCY w.ciitirecceeeissnrenieesesssnnrsnsesesssessssnsssssnssessassasaens 13 :
y &,
' 2. Floating POINt Ut coovuee.eeeeoneveesnneessssnreeesseeeessesensseesmesssessesssesses 14 S
) N
TR © e N 14 :*
4. Memory 17 ?\
5. Ti -
G

e i .
B GGNHY OGBAAACN Y

A OVERVIEWooocciieveiseeessssesssresssseesssesssssssssasssssssssssssssssessesessssesssnsossasssns 20
B. PRIORRESEARCH.ccoictcceceretettesseesessssnssseesssssssssssssssssssssssassrssssesesss 20
C. TESTMETHODOLOGY....cccesreeemeeeeererereeereesssesessessssssssssossesssssssssssnsaasensen 21
S R 007111151 211 (0) o FOUURSUUO N OO OSSOSO 21
. SO AT L ceeeieeececcrneersersesetnesassessasssessosssserstrosesssssssssasasasssssssansssassnssssns 23
3. CONAILIOIIS cieireererecrerersssraeorsssnsresssaseosssssesssnssasssrossasesssssessssannesessanssns 23
4. Data Management.......cueeeneisenniinsiosessnnisiiiesssninismsessmses 25
D. TEST RESULTS...ccoccctettetreeseeseescesssssssssssassssssssssssosssssssssasossasssssssssssssassens 26
1 Isolated Processor PerfOrmanCe... e ecceeiesosesssensecens 26
2. Isolated Communications Link Performance.......ccone. 31
3. Communication Link INteraction........ccoceerevieciunrerrenrerniencrenennes 34
4., Communication Link Effects on Processor
POI OITIIATICE. . .. eeeeeeeeeeeeeeeessssssesssseeseessosonssessessssnsessssnssnnnsnnsasssssssassns 38
5. Processor Effects on Communications Link
POT OITIIANICE e ieeerereteieseeseierireeseesessssessosssesseesssssessesanssssrsrusessrans 43
6. SUMMALY.....ccccvvrnrininenrisinssesrnsneisessnssesiessin sessssssessssnssnessssssens 44
IV. SHARED MEMORY MODEL PROGRAMMING
INTERFACE...... eeeressesseessesnensessesessensns enntsseseestanstrssteanntroseeetsiatsstnsrsesrernssnnrananns 45
A BACKGROUNDoiiiioircetieeeesteesesssssseresseasssssssessrssssssssssesesssssesssnassssssssssase 45
B. EVENT COUNTS AND SEQUENCERS.......ccccoettvtreeineeriienrerreeeneennes 46
C. IMPLEMENTATIONooocttvietieecereesisstessresesssssesssessssesssesssssssessssssssessaes 47
B o TSR 405 0 o 1 RN 50
a Input/Output Buffers........ccoonvvininniiiinncniinineineenen, 51
vi
7; A "; l."."!ﬂ!oo.‘ - " ‘ W J'o.‘ (X l o o ‘ \.O‘v . by o > ."o) I‘-. ‘ : .

Ayt

“HENEA

-

NJ

ERRRRK AN AR

V- ga% dat Yot $0 gt fa¥

S 0% 0a® e Ba® Ga¥ a” 3% Uad favatat bt br® 0t et atafarobat Bav et G5 03¢ davalat Bat sataiatata® " iar oy

b. Communications Manager ... 51
c. Shared Memory Manager.........ccccoovverevinnneerecininnniicnsnnenne. 52
2. Data SIrUCLUIES ..o sssaesreeens 52
A NOdelNK.....cciivecriicnntiininiieete st 52
D, COUNL.NIOAE .ottt saeassssssessssssssiesanseas 53
C. COUNLAITAY cocverrrrsessersessmsersossessassessessissisessasssesssasessssnessssssssasaass 53
d. count.array.indiCes.......ccccmverrerreinniseisiuinsnnnieneenesnreniennens 54
€. NOAE.AWALS c.cvecerreinrscsenrsritsitesnisesssnisesessesessssssssessssnssssans 54
£ frE@.liSt ittt 56
. COUNLSIZE.....cooruriiiriitiiinicrteste s aa s nssanssessnssnss e esseneonas 56
h Node.data ... 56
3. Library Procedures ... 57
a read(link, count.id, count.value)ivniicinrennen. 59
b. advance(link, count.id) ..., 59
c. await(link, count.id, count.value)..........rnrcnnnnnee 59
d. ticket(link, count.id, ticket.value)........ccccceerrvernnennnnnen. 59
e. put(link, count.id, index, byte.array)......ccccceveveieirinennnnn. 59
f. get(link, count.id, index, byte.array)....: 60
g. ecs.kernel(link.array,count.node,count.size,
node.id, node.link)cvcrvvernrnrncersvssesecessnsesescscsnsusnian. 60
D. PROGRAMMINGccotmrrrrenrcnrnrsnsisesiesessrossssasessscsssessssssmssssmssessasassesoses 60
E. EVALUATION.....cccoiteterrrierecteietstseseesesssstesesssesessssessessssessssssssonessssssnenens 61
1. Basic Interface Procedure Timing ..., 62
2. Node Distance Effects on Communication Rate................ 66

h)‘“r
X

. R E”

o

o o

.
Ll

% e g WS S LR A Tl 5
Ao a7 oW 4

-t

- .

e,

WS

ol 2 L B
¥ /K&? (_v, ':.(' b T

Y

oA A~

R =]

T N

-

-
-

1

N NI IO TY Yy N UR S AR B VAT A 0 e Al aV e 4% 0% 0"} ¢ g8 et 2.6 Fa¥ 40 £o7 el ie® et 0 * BY ath e i et L7040 ¢" Ry K -.‘;
¥
\
&
%
3. Hardware Link Sharing Effects on h
Commurnication RAte.......cc.eviviiirriiiniininnnernnccnner e seaeees 68 b
4. Multiple Link Effects on Communication Rate.................. 70 ‘
V. MESSAGE-PASSING MODEL PROGRAMMING A
INTERFACEonnrirummnreassresssnsessssmssssssssssssssssssssssssssssssssessissssssssssssssssassssonees 73 o
A, BACKGROUND.....cocieniiintssinnnenensnssssssssssssssssssssssssassessssssssasssssssssssssssnass 73 ;
B IMPLEMENTATION ...otiiiernemsescsnssssssasssessssassssssessssssssssossscsssasssssass 73 N
1. THEKEMMEL...ooooeooceeessees e ssnesssnesssssssssnssessnesssssses s 76 '
a Input/Output Buffers........cccovvvnicsincnnriiriccniscnnne. 76 *
L
b. Channel CONtrollerscimeneisissessnesaesssnsmsessassons 76 N
¢c. Communications Manager ... 78 i
A
2. Data StIUCLUTIESccociricercirnseniestinsestsssessssssssssesssssssosssassesssanas 78 :'
& DOQEHNK..oooeerorrroesseeesscssssssssssesssssssssssmsssssssssnssessssonses 79 n
I,
b, gChannode........icisnnienissinnionensissesensessssiesasessesena 79
C. ZChanIChan......ieerrcrriesisennnessesessesssssnssenensasnsasseseaes 81 .
by
A, JOC.CRAN ittt ss e steneesesseesesnsesetennasesesnsansaesnsses 81 2
¢
e. Ichan.gehan. .. niirsrccescicensesee e 81 =
£ ChaN.MaP e reensssessssssensesaessassesanssssnses 81
‘w3
2. Library ProCedurIES ... nccrrererssenesssesssssssisssssnssssssanssssses 82 i
C. PROGRAMMING ...covvrieniereriruesessnrsnssessssssasssssssssssssssssssssssssssssssassssssens 82
D. EVALUATION......cciicititienetieniieiecirisssareesersnessssssessssssssssssssasssesssnserassssanas 83 «
1. Node Distance Effects on Communications Rate............... 83
2. Hardware Link Sharing Effects on '
Communication Rate.............ccccvvviviniinininninneieneii s 87 .
,
3. Multiple Link Effects on Communication Rate................ 88 .
Pl
viii -
[
r
n
&
]

) LRS! L ALY L S LT Y R PR T Rl ¥ IR IR o e Wt P N aT e W T T N Y M e W N N - - .y
B e o D N N R R]

LU PURCTUR PO SO TTUN U WM TN TR W0 W vl N N0 KA NN AR W W W V¥ W SV Aln LA Tanaty. 4y gy~ P TI0 BASYA AR A i AL Ta L vl ot SR Al

VI. CONCLUSIONS AND RECOMMENDATIONScooniimcnnrenncruensennnnes 89
A, CONCLUSIONS ...ttt sresssssssssssssssssssssssssssssssssnins 89
B. RECOMMENDATIONS ..ottt ssiessesssssessenens 90

APPENDIX A DETAILED TRANSPUTER TIMING TEST

CONFIGURATION AND SOURCE CODE................ccuu... 92

A SUMMARY......coiitieierrensnceiisistssssissssssessstsntsssssntessssssossasssssssssssssassnssssns 92
B, SOURCE CODE......ininnrninenisesisssisesisisiascsssessaississssssasssssssssssssssssssss 92
1. Configuration SeCHiONinnniiniieessinisscissesssessssssscae 92

2. Target Node ProCedure...... e 95

3. Satellite Node Procedure.........c.ccvvuieiiuiiinniercnneinnecinsieniennnnns 100

4. Echoing (Data Routing) Node Procedure.........cccoceeunuunnee 102

5. Host (Data Recording) Proceduremeecivesscnnninnnen 103
APPENDIX B TIMING DATABASE DESCRIPTIONccccocenirnnecvnnconne 108
A, DISCUSSIONuciiirireracisisirissosesasssssssssssssssisastessissssassssssssssssssssssses 108
B. DATABASE DESCRIPTIONuiiinismsesssiessssessasmscsssesssssessssaens 108
C. EXAMPLES.......coivtntrrersiresissssetsiessaisesssssssesssesissasstosesssesnsssssssesssssssans 111
1. Data Loading ... 111

2. DataRetrieval.... ...t 112

3. Data Unloading......umiiimiecessiesises 114

APPENDIX C DETAILED SOURCE CODE FOR THE SHARED
MEMORY ABSTRACT INTERFACE LIBRARY............... 115

A SYMBOLIC CONSTANTS........cooimireniriinrtiines it essnesnessaesanens 115

r:"

“"

P

-

- e 5 XA

L

l",l‘.J';l'.'P r\‘ﬂ’ﬁ*(d ‘- ..,- ‘..‘r ‘.

e -

YR Y P TR T TR T T O T T S T T T T g R e T o OO T g ST o erey
B. KERNEL PROCEDURE......ueriicntienenniesnisssssiesesssssssssssssosssnes 116
C. READ PROCEDURE.......ccovrereieistnnnecsssscsissesttssessesssessesssnens 126
D. ADVANCE PROCEDUREcccoceimiiiiniriiinesnesnsnesessssssseesescssensanns 126
E. AWAIT PROCEDURE.criinicntmreneesisssstssestssssasenassarssassses 127
F. TICKET PROCEDURErininisenrsssensiesssessesssiosssssssssesses 128
G. PUTPROCEDURE........ccccetnnttmrintiinncecssissaisssissnesssssssssesssesessssessenes 129
H. GETPROCEDURE.........cccccertmitrrininninrissrisssssssiesseesesssssssessssosessssesss 130

APPENDIXD SAMPLE PROGRAM USING THE SHARED-MEMORY

INTERFAGCE.........iticcrerecsseresiessessssseresssssseressssassesassessses 132
DESCRIPTION ..ttt crteivnrecisineissseesesssssessassessssssssesssssssssssases sesssessenas 132
MODULARIZATION .ueeieevecrneneerecssesssssessessassnnes reressrnsrresosassensnsanerosnens 132
1, PrOAUCEIS cieeciicceerterreitisseessesssssssssasssssssssessssssessssssssssssnssssssnnes 132
2. CONSUITIETuueerrercteresnteesesssssesensesessseesssasssssessassasesssssssanasessessnsessses 133

C. MODULE CODING ...cccocctrerrrniisnreciecssesesssssssssssssssssstssssssssssssssssssssossssannn 133
L. PrOQUCEIS ceeceitecrtteririrsssesesssseessesansssssssessssessssssennessessanesessmntess 133
2. CONSUITIET wevirereeeerernneiersenecossossoconsssasssemsssnsesssssss sosssssessesnaseressetessonns 134
D. APPORTIONMENT OF MODULES...ccottocetrieeeiesescerressnnssesaesssesssns 134
1. Single TranSputer........ et saenesens 135
2. Three TransSpUers ..ot cssesseesenns 136

X

T e e F L B L S T R WL et S T T, T L A AR VA N ST SR S anes

A

x

T L O e Do 3¢ i d IR (e g

S

NS NNAN Ty LS I

HRI™,
e me e S 4

N

AN

{
oo

o

v

APPENDIX E DETAILED SOURCE CODE FOR
THE MESSAGE-PASSING ABSTRACT

INTERFACE LIBRARYcccocvnnmininrininnienisnsnssioseseseens 138
A, SYMBOLIC CONSTANTS.......ttttitrrerrerccnrtiennetesseteesntesssasesssessseseecsns 138
B. KERNEL PROCEDURE. ...ttt sseseens 139

APPENDIX F SAMPLE PROGRAM USING THE MESSAGE-PASSING

INTERFAGCE ... eeieteeeeeatrecssssescrsssesessesesasssssssesssssssssnne 150

DESCRIPTION ..o cottittieietrieeicssesnessseesesssssssesessssssnsssessesssssssssasesssssssnss 150

MODULARIZATION .oooieiiicccnireriescrsesseossosssssessssssssessseessesssssssassesesessanssss 150

) S 5 oo Yo £ (T =) of TP O UUU SO RO RU U 150

2. CONSUINIET euieeieinemeieriereteieeeeesssessssssssessnsesassassssssessssssssssssssesesesssanses 151

B T 51 1 (=% OSSO OUP SR UURSR 151

C. MODULE CODING.....cocttrverniissnrecssssreesstasessssenesssnssesssassssssasssssesassessass 151

) R 5 o Yo A6 U] =5 of SOOI 151

2. COTSUITIET ..coceeieiriieeeeirnntriesssosnsessessssssssseesassssasessessssssssssenasessssssnnsass 152

S BUIET ...ttt see e s tesaeesae s nsanabesasessans 152

D. APPORTIONMENT OF MODULES.....eersneeisssnneressssesssssseses 153

1. Single TranSPULer ... it sssessesaseses 153

2. Four TranSputerS........ i cieeiiectneisnnscssenscsseessneecnsesesanaenne 154

LIST OF REFERENCGESooo oo tiieteiieieerteeessseesssesosssesesssssssessonsssssessassemessessennn 157

INITIAL DISTRIBUTION LIST ..ottt eeeeeieeeeteesesisteseeisssesasessssnnesns 159
Xi

....

A dr e AR

55 S A _‘:- e

L POR AR | A=
= e EI AR ,
-l AL A A4 > o

A 'a}'}"'v S

-
) "'l'

I ey

3.1

3.2

3.3
3.4
B.1
B.2

B.3

B4

B.5

LIST OF TABLES

T414 Expected and Measured Instruction
Execution Timesiiiiiniiinnnesssensnsernnimssnsessssessessessssns 30

T800 Expected and Measured Instruction

EXECUUOMN TIMIES .coinreciirreiernsercnocsisansssssssnsassessaesnssssnsesseseesessessssssessasssssesseses 31
Isolated Communication Link Performance.........uencrereennenee 32
Processor Effects on Communications Performance...................... 43
Timing Data Relation Definition.......c.c.ccevveircnnirececreverenveeresinnersseeeennne 109
Relation Definition for Converting Encoded
OPEration NAIMES.........ocieriineisineesrisiisntiitesssesseersssssressesasssessssssessssssessesses 110
Relation Definition for Converting Encoded
Priority NAINESccivineniniinccniissesissssssssssessesssssssnensrassensssessssssssssessese 110
Relation Definition for Converting Encoded
LOCAtHON NAIMIES.....ccccuirrrininirenrecsesieitoninassasesasnessansrsnesssessnsenssserssssssassssssassasss 111
Relatior: Definition for The Retrieved New_Relation................... 114
xii

2 x = a

L N B W

AU M

P R T

e

- -

FSal R M

o

D
D

o
\
)
]
[}

R RO T AT TR

2.1
2.2
2.3
2.4
2.5
2.6
2.7
3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

3.9

3.10

3.11

R N T R I R N O R O GO OO T R R Ry

LIST OF FIGURES
Process Representation Example........cooccevvveiiiiiieieninniiiiencecineecnineeeene 7
Process Abstraction EXample.......cccvcecceemerecisceicnunrenseisscecieennensssessesserens 7
Transputer Functional Block Diagram ... wmsesenes 9
Processor Block Dia@raml.....cciimencisssiseessessssesssnsnsssssessssesenss 10
Example of Operand Register Operation..........cvccvveeeeeciriireencsrocnnnnene 11
Hardware Communication Link Logical Block Diagram................. 15
Serial Communication Link Protocol ..., 16
Logical Diagram of Test Configurationceeemsencsesenseresesencennens 22
T414 Multiple Link Effects on Communications Rate.......c.cccceu.... 35
T800 Multiple Link Effects on Communications Rate................... 35
T414 Packet Size Effects on Communications Rate..........ccu...... 37
T800 Packet Size Effects on Communications Rate........cccceeeuerenee 37
T414 Performance Degradation with
INO LOOD OPEIation.....c.cisureereruirmrceisunssssissuncssisssessistsnsessssissesessssssssssescsseseess 39
T414 Performance Degradation with
Four Divide OPerationseeccissnesnniissisismsisssssesssssscscssoncssses 39
T800 Performance Degradation with
NO LOOD OPEration......ccviiiiveiiietiiicsiiiirincsenrsienie e s eseesensesesssasaess 40
T800 Performance Degradation with
Four Divide OPerationsiinenenrnicninenneeesrieneesessessresssesss 40
T414 Bus Access Frequency Effects on
Performance Degradation..........inencnnnssessssnsnssssssessssnens 42
T800 Bus Access Frequency Effects on
Performance Degradation ... ceneccnccnnineneeseensscnnnnssassssssssesseans 42

xiii

%

.~ LRI -y - SRR I AT RIS R A Ry WA Rt L s
MOttt A A OO .-. W .l X -f.' ” 'r , f‘. s, .0!.\- - "r*‘ \. AN \j

L om g g s

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13

4.14
4.15
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Physical Configuration of Shared Memory Kernel.........ccccceeunenu.. 48
Logical Configuration of Shared Memory Kernel...........cccccceeereeeenee. 49
Shared Memory Kernel Logical Block Diagramcccccrevvrverineneee 50
Kernel Communication Packet Formatsceiiicncrncscscencnnen. 51
Kernel Waiting Process List StrucCturervnneninnencscensnenee 55
Kernel Waiting Free List Managementceceeincnnenncsarassissssenns 57
Kernel Shared Memory Access Data Structures........eeeeeieiieireennnne. 58
Primitive Operation Timing Test Resultsiiinnnconseneccnnane 63
Put Operation Timing Test Resultsunccnnninncneccnncscncsnsnnee 63
Get Operation Timing Test ResUltS.....ciicrenrcnnsenncnsnctsensescsseenns 64
Count and Shared Memory Location Effects

on Communication RALecvincsncnncnnctessssssnsesssesisnnes 66
Hop Distance Effects on Communication Data Rate........................ 67
Intermediate Process Degradation

During COMIMUNICAION c....cccerresissssmssrcsssssissienssssesssssssssessassansssssssnsesssesasans 69
Shared Hardware Link Communication Rates...........cccceeeveerrcrnnennnens 70
Multiple Hardware Link Communication Rates.........cccccvereceecnnnes 71
Physical Configuration of Message Passing Kernel.........cccececennenne. 74
Logical Configuration of Message Passing Kernel............cccccevuennenne. 75
Message Passing Kernel Logical Block Diagram........cccccevevieccunee. 77
Kermel Communication Packet Formatcccccvcevrnevnrnscccuesecesennenes 78
Kernel Data Structure Interrelation.........cccccnneneenesesns 80
Hop Distance Effects on Communication Data Rate..............ccuueun.n. 84
Comparison of Hop Distance Effects.....nnnvnnnnnnessesssssesesens 85
Intermediate Process Degradation During Communication........ 86
Shared Hardware Link Communication Rates.........cccccccvvvevereeecenaennn. 87

xiv

........

RN A N

[

‘{{I{'(‘I"‘"

-

P2 s

_ -
L & o

-

2l

o w R

-

P 00e % 0% 07200 0 0 4 Rty W '8 ’ AN 2020 03 Gav iat Bat Sa¥ i tav gt

5.10 Multiple Hardware Link Communication Rates
A.1 Detailed Test Configuration

B.1 Query Language Listing for Loading the Database
B.2 Example of Retrieval for Display

B.3 Example of Retrieval for Forming a New Relation
B.4 Query Language Listing for Unloading the Database

AT R ,‘ .'r\r,'r S SRS ..-‘.\l“,(.\{.'l.'.-’.--",‘ Ay WL RO .‘-'\.'*.: .:‘.'\. oA -.5 _-\

R R O ORI O Y O R T SO RO T Y I R R T U NG R ¥ IR T W W WO R o R R TON OO Y e UNTVY

DAL A

DEDICATION

IR ER LS

I dedicate this thesis to my wife, Kathy, who gave me confidence

and encouragement and to my children, Betsey and Rusty, who were -

patient and understanding.

[d

- -

perr————
-
”

X0

- e en e @ =
- -.——“':I. ‘.‘.4

-
7 AL

-
)

?‘l'l

.
£ Cg”
A4

-
- LR

% S S S

T - - -

N

-

-
[
-

) £ e PP CR i Tl X e N LA T » L% T R P L T I TR LY RS R L Rt R T RO R R Tt et 1]
LA l.!\'bi'n ,‘I’. l'.lt‘l-l-l'n INACATAGN ..‘v Wy 8y \..‘0. 1. 9%0.9%. A ‘.l» “ " *.' 1) H- "’"'r "‘J. W J\&h-\f"*i'mm}iﬁ. !

' %00 0 * o

20 0% 120 Z0a' 02% 020 02 Ta ¥ 0p" g% he® it Y’ $g% $2" 0a® $a% 02° . 02® $9° ¥2% §:% Ba® L2 hat® ¢ Ba0 o0 G0 et S DA LN R 08

I. INTRODUCTION

A BACKGROUND

The Aegis Modeling Project in the Computer Science Department
at the Naval Postgraduate School is engaged in researching advanced
computer architectures for potential future application aboard naval
ships. Currently, this research is centered on the application and
evaluation of distributed computing architectures. A distributed
architecture is particularly suited for shipboard applications. Ship-
board locations at which processing capabilities are required are
physically distributed, yet processors at all locations must cooperate to
monitor and control a ship's sensors and systems. Such an architec-
ture can also provide the necessary characteristics of high perfor-
mance, fault tolerance, and extensibility.

One emphasis of the current research has been to investigate sys-
tems that are composed of relatively low cost, “off-the-shelf” compo-
nents. The single chip microprocessor is such a component. A range
of microprocessor-based distributed multicomputer systems are,
therefore, being evalua_ted. One such system already developed and
evaluated uses clusters of microprocessor-based single-board comput-
ers interconnected by a hierarchical bus structure [Ga86]. A dis-
tributed system architecture now being evaluated is based on the

single chip microprocessor known as the Transputer.

Ol ki sl

P BT T T P N AT A B A P GNP

b g

4@ S

ALY

X_t_¢ k2
- ﬁ"\‘_ﬂ]

N T TR U R N PR N Y P N O N O O O O O T YO TR T K O TR S T O T X T W T Y WY W WU PO W R

B. THE TRANSPUTER
.- —-—7 The Transputer is a single chip microprocessor that has been
specifically designed to function as a computing element in a dis-

tributed multicomputer system.. The name “Transputer” is an amal-

J—

LR 2 2

gam of the words transistor and computer. 2 As the transistor was a

building block for large and varied electronic circuits, the Transputer N
is intended by the manufacturer to be an analogous building block for ’~
distributed computing systems.) i3
p To facilitate the use of the Transputer as an element in a dis- '
tributed system, the ’I‘ransputer 1mp1ernents the concept of Commu- :
nicating Sequential Processes%o?ﬂ Communicating Sequential ‘.'
Processes is a paradigm which defines and describes the interaction of ?
programs that execute in parallel (as is the case in a distributed ::i
system). ., ... ! OC,[:f \WW,, s [57\5;/ S /m .:3
C ABSTRACT PROGRAMMING INTERFAC!-Q.S ; T
Program development for a network of Transputers is currently)
closely tied to the particular physical configuration of a given network. v‘
The physical configuration of a network must be considered early and :
throughout the software design process. In certain cases, the configu- Q‘}
ration can actually dictate aspects of software design. This thesis ;
investigates isolating the software designer from this physical configu- ‘:::'
ration through the use of an abstract programming interface. "
~

}i]

~ L Y A ¥

! A

y

2 3
\

o3

.

=

N LA A T T T T Tl Al o TN L e T T gt S et 4 o P B SN e N -'x'-:“:

D. AVAILABLE HARDWARE AND SOFTWARE

The Transputer hardware available to the Aegis Modeling Prc;ject
is varied. The hardware includes Transputer interface cards for per-
sonal computers, Transputer-based serial interface and color graphics
interface cards, and cards with multiple Transputers. Aspects of this
hardware that pertain to portions of this thesis are discused where
applicable. A complete description of the hardware is available
elsewhere [In86].

Programs included in this thesis were developed using the¢ Trans-
puter Development System(TDS) [In87a] and the OCCAM program-
ming language [PoMa87]. OCCAM is a high-level block-structured lan-
guage which includes constructs based on CSP to support program-
ming in a distributed environment. An assembler and Pascal and C

comyilers for the Transputer are also available.

E. THESIS ORGANIZATION

Chapter II describes the Transputer and the basic concept of
Communicating Sequential Processes.

This thesis investigates the basic performance characteristics of a
Transputer as an element in a network of Transputers. Chapter III
describes testing that was performed and documents the results of
this testing.

Chapter IV and Chapter V describe and evaluate two different
prototype abstract programming interfaces developed for a network of
Transputers. One interface is based on a virtual globally shared mem-

ory. The other is based on message passing.

D

|
K B i R R L R LR L AR S S R

4

L}

RS

o

TN

e)
0 :

nogaé ga® T g

AaT Uat VI PRT g 0aY e Ha Wat fad Kt a" 027 NaS Ut fa® ¢zt g0 Ae?, Jat et 0af Uat ba® ot dav $a% Aa’ tat 1% 4ot $a% B2 Ba¥ 0a% U4, 8% 040 420 50 00Y A8 g

Chapter VI presents the conclusions reached as a result of devel-
oping, using, and evaluating the programming interfaces. Recommen-

dations for further research are also provided in Chapter VI.

LA EE NI TR R T -
d &,' 1 B (Vl‘ "‘ ’ v
At / ’\ -. '- ’.l‘ " - Ladlind)

oy kA R R I Xy Y VN T H T AT AT A VA A A TR A
0.0. l;‘i.. », SRR e s N o . _. Ar.a'l. W X

.
Rl

v.',)’:}‘/ ‘

w5
(D
-,

STl et

o S o]
2oL,

P ELLA AT
o

Ll

A TR WP WO W SIS i’.{rt’?’l .‘
wr
b
o
X:
ats '|;
5
:_i\ l
.-)"y
II. THE TRANSPUTE “"
-:;\' 3
2N
A OVERVIEW 2
Ly e
Central to the to the Transputer is the concept of Communicating ":
Sequential Processes (CSP) [Ho79]. The Transputer is, in fact, a hard- ii"v‘
gt
,,‘U.]
ware implementation of this concept. The programming language ?""'
2
OCCAM, which is the primary language used for programming the i
‘_ .
Transputer, is based on this concept. A summary of CSP is presented ';,
A
in this chapter.
6
To effectively evaluate and use the Transputer requires an under- T "
standing of how the Transputer implements the concept of CSP. In ...
(4 l'
addition, in many cases this thesis refers to Transputer architectural E o
\ t
features and details. This chapter, therefore, also presents a brief o
description of Transputer architecture. ;?_ .
N
Ny
B. COMMUNICATING SEQUENTIAL PROCESSES ‘:§ ’
o
Communicating Sequential Processes (CSP) is one model for con- s
current or parallel programming. In CSP, a program is composed of :
processes. A process consists of a list of commands or instructions & ::‘.:g'
WX
that are to be executed in sequence. The different processes within a o
program are combined and specified to be executed in sequence or in _‘_’é"
parallel or in some sequential/parallel combination. The data spaces :i:
Yy
for any processes executed in parallel are constrained to be disjoint. "V"? ‘
This requirement for parallel processes to have disjoint data :'.':'.Q
ra
spaces precludes using shared memory to communicate between the 3'.?:
. 1
5 Ly
b

T WY oy —— N YN Y
RO RO T OO R T T K Vo -~ Y Y N VA R O R O O IO W oY ¥ TNV UV VN

processes. To provide for necessary process-to-process communica-
tion, CSP instead utilizes message passing. Messages are passed
between any pair of parallel processes via synchronous, unbuffered,
point-to-point communications channels connected between the
processes. These communication channels also provide the means for
synchronizing processes. To communicate between two processes,
one process must include an instruction for performing an output to
the other process and the other process must include a corresponding
input instruction. Both processes must be at that point in their
instruction execution where the communication is specified to occur
(If one process reaches this point first, it waits for the other process
to reach its point of communication). The communication is then
performed. Since the communication only occurs when both process
are at their points of communication, the processes are synchronized
at these points. In addition, CSP includes constructs for program
control and sequencing and for conditional selection between multiple
communications.

Figure 2.1 depicts a set of processes (represented as circles)
interconnected by point-to-point communications links (represented
as directed lines). This set of processes would operate independently

and in parallel on a continuous stream of input values to produce a

continuous stream of output values.

e ~ e N

m AMLA!C:.{;;L P, N \.‘F

D
b_

1”‘-:

F LA

“ ity
" s

-
-,

W,
(3

LY

e S

ORI AU WDC OGO R RO el 6o o Ut iah G LA I A AN SRR AN S At AN n Iet A AU VAL gD aNL gl aBE QAR P RaTE arl piiigvh gVl SN gl

Sty Y Yy
=9 AT

T

s,

Processes to Calculate Unity Based on the Formula

’,2 2
sSin X + COS X

) (==
(=

Figure 2.1. X 1 3,‘; v

s

A

-
®

>,
o A
)

R
X

o

S

L

ATV TR
3 gy .
R

x
A

o eign)

Groups of processes may be logically aggregated to form larger, AxE
more abstracted process constructs. Figure 2.2 shows one possible i3

abstraction of a subset of the processes shown in Figure 2.1.

N Processes to Calculate Unity Based on the Formula v

.2 2 :.r
sSin X + COS X x

Figure 2.2. raction Ex 1 o

' »

)

SRR LIS I IS TR TR LS T e I AR R PN L W I W | N I g) «gm IS, « .—‘:N
‘”Q’!I.»ll.‘ A . Co¥ Ba) J‘(K “ﬂ‘,a " 3 -. & AN A 2 -‘.' ‘."\V - ~l > .' mea VN ~ L) ‘

» .

C. TRANSPUTER ARCHITECTURE

A block diagram of a typical Transputer is shown in Figure 2.3.
This figure depicts the major architectural components a Transputer.
The following sections give a brief description of each of these com-
ponents. In particular, these sections point out some architectural
aspects of the Transputer that can influence the performance of pro-
grams written for the Transputer.

Several versions of the Transputer are currently available. This
thesis considers only Transputer types T414 and T800. For this rea-
son, the following sections describe the features of these Transputer
types. A complete description of all currently available Transputers
can be found elsewhere [In87b].

1. Processor

In general, the processor consists of a 32-bit integer arith-
metic unit and a set of 32-bit registers. Figure 2.4 shows a block dia-
gram of the processor. The I or instruction register points to the next
instruction to be executed in a process. The W or workspace register
is a pointer to the beginning of an area in memory that is the data
space for a process. Together, these two registers can be thought of
as representing the instructions and the data for a single process. The
A, B, and C registers form a push-down evaluation stack. In general,
all operations are performed on or using the values in these registers.
For example, the load and store operations load and store the value of
the A register. The add operation adds the values of the A and B

registers leaving the result in the A register.

T g I
J.I‘I‘L

.'
2

A o

l(.’

e

;] e T | -
W05 ‘- 3 " ’o 0

e, ..-. . ‘\4 " . .. 5 -. ---gv U SN n\ _ "ol l'..‘[.‘
Floating Point Unit
Processor
I
n
t
e N
r 17
n N\
a AN
| k ;
N\
. 1
|7
N\
N
yd _
N 17
/7
External Memory
Interface
Figure 2.3. Transputer Functional Block Diagram
9
A A R D S A S

>-w .
.i _%.’}-q_v

.“.

TR
! \?‘_\ d
T 2
a3

_‘.-! .

. -
. ¥
P,

4

.-. ,’

AL
L "%{3 -

A
1.‘.4‘.«"

PRI
VPR A
e P

LTS g B8
“"‘;-{ ’l‘,.,{"' ‘,

]

A

S

)
“

£,

O Register

Micro-Coded
) Ny - Sequence
::‘: A Register Controller
0 B Register

i

C Register

v

¢ dEsseE

- Ve
b N\t Regi 32-bit Integer

SO A =a L egister____ Arithmetic

, W Register Logic Unit
N
KA.

\:

Nl

ﬁ
v Figure 2.4. P r B Di
b
K a Instruction Set
L)
Rl Each byte in a program can be viewed as having a four-bit
high-order half and a four-bit low-order half. The low-order half of an)
q instruction byte contains a data value. The high-order half contains a
w function code. To execute such an instruction, the data value half of
- the instruction byte is loaded into the operand register and the func
R

= tion encoded in the other half of the instruction byte is performed. At
J,'\-

. this point, it would appear that this instruction format limits operand
7 values to the range of O to 15 and that only 16 different functions
3 could be performed. A means is provided, however, for representing
"
X larger data values and for encoding a greater number of functions. The
\ O or operand register is used to form operands and multi-byte
i'_'

<.
ﬁ; instructions from a sequence bytes. For data values represented by

:‘. 10

B R R R R O R R R R A R R R R R R R AW S IR T W IR Vpadte S'a Ta H'aAVa B a R b e Lt a8le 0 a4 0 0yt 08 ot Bt 00 bat got

\
(4
\J
o

A\
{*.
o

: : : sere : >
more than four bits, special function codes cause individual four bit N
' A
AN
“pieces” of the data value to be extracted from a series of instruction -'f"
bytes and accumulated in the operand register. The last function code "*
in this series of instruction bytes will actually operate on the accumu- oy
L0® 1
. . v

lated data value. Figure 2.5 shows an example of this operand forma- _
WX
tion process. -
S
W
.o:'t

. . ()
Example Adds $5A9 to Register A Instruction R

Bytes ®
(adc #$5A9) Y Y !
X 1Y .,:::
Function 8 1.9 Data ot
Codes 2 %A Values "
2 ' 5 8400

)
ORegister | 9 1 0 1 0 0o {0 Y0 10 }o | -
ARegister [0 10 to toltB e 14 13 | W
N N :'Q
X_t Y Nt

- 8 19
\ X
ORegister |_0 { 0 ! : 10 Y0 t5 10 | ,.:
ARegister [0 1 0 {0 {0 (B 141 13] s
B

ﬂ- "N, .
X 1Y ::i

8 1o i

ORegister | 0 1 0 { 0 1 0 0 Y5 ‘A {0 | ¥

ARegister [0 t 0 + 0 {0 1B v4 11 3] \

)
S

N N '.\.
oM

X 1Y ~
ORegister [0 1 0 1 0 10 10 10 0 ‘0] N
v — AN
ARegister L O { 0 1 0 30 +B Y9 +8 +¢C | ¥ WS

]
. LA
. \:CJn

Figure 2.5. Example of Operand Register Operation a0
.\h
e

o

Al
.
1 1 [N s
o
230
o
f-.b

Al

~
.
Y
.
e
.
#

To encode functions with value representations greater

than four bits, the value representing such a function is loaded into the
operand register in the same manner as if it were data. A special
function code then causes the value in the operand register to be exe-
cuted as an instruction. Using this instruction formatting scheme, the
instruction set has been optimized so that the most frequently used
operations are encoded using only a single byte. Measurements show
that about 70% of the instructions actually executed in a typical pro-
gram are, in fact, encoded using only a single byte [In87c]. Having
most instructions represented as single bytes not only reduces the
memory requirements for program code but tends to improve pro-
gram performance. This is because, since fewer bytes are fetched per
instruction executed, fewer memory accesses will be required to exe-
cute the program.

This method of encoding instructions has other effects
on processor performance. Each byte of a multi-byte instruction takes
one processor clock cycle to load into the operand register for assem-
bly of ‘' instruction or its operand. Because of this, instructions with
a grc or byte length take more time to assemble before they can be
executed. In most cases, the length of an instruction is fixed. How-
ever, in some cases, the length of an instruction is dependent on the
value or location of the instruction’s operand. Since these factors can
be controlled by the programmer, it is useful to be aware of these
types of instructions. For example, data values located in the first 16

locations above the base of the processor workspace require only one

12

A A A T

e S A RS L™ LB It B Bt LTV e -’-,- -
DA AL U O O o U U N I L L i A A N S IS

ol P

-0

wrr Yl SR P

W P At g 4
< o, 27 n s

" - 4 X lsl.‘l’l‘
P ol

L
i e

Y

L] " . g™, W " A J A - - .‘ e T u "h \""x' \'.l" L
Y N Ut G N G N R GG A A PN

SR SR T W S T O T W S WU W O U WS OO OOy AW W W WU WP WL WU WU WU LR O P S W $af 0p" 0e® 0a® b2t

instruction byte to be accessed. Data values located elsewhere require
additional instruction bytes, which increases the time required to
access these data values. Because of this, frequently accessed data val-
ues should be located closest to the base of the workspace. Also,
loading a constant takes one instruction byte for each four bits of the
constant’s length. This means that loading a 32-bit constant takes
eight processor clock cycles. If such a constant is to be used
repeatedly, it is often more efficient to name and store the constant as
a data value and use that data value instead.
b. Concurrency

A single Transputer directly supports running concur-
rent processes. These processes may be either of two priority levels:
high or low. To facilitate implementation of concurrency and prioriti-
zation, the Transputer has a micro-coded process scheduler. The
operations performed by this scheduler can be examined based on
whether a process is active or inactive. An inactive process is one that
is waiting on communication or on a programmed time delay
(operations for inactive processes are discussed later in this chapter).
An active process is one that is not waiting and is ready to execute.

To manage the active processes, the process scheduler
maintains a separate linked list of active processes for each priority
level. Instructions are included in the instruction set for starting new
processes by adding the process to an active process list. Processes
are selected for execution from these active process lists based on the

following generalized rules:

13

(4

R I T A T S A N g R g g N N VL VA R R o i iy Y
Y . & Realiaafieal oy K Lad

; ?‘?.:’ f"{&._ 1‘ @ Tvi

=,
S __=_}

ol e She

- e e

i gk it

P
4,870,859, ¥

o a°

P OBV 1.4 0§ a0 Vol N S pN Nah Tav v ab ¢at Sul taf Cat Sal At et et ub o g AN RV RY Tt R Bl Aty 8L 4% BVa $V0 $'2 8% 8°8 8°8 '8 0" ' 0. A R Rt B0 0.0 2t 0t 4.0°0,0 82' Bat 82°

* High-priority processes are always executed in preference to low-
priority processes. If a low-priority process is executing when a
high-priority process is added to the high-priority active process
list, the low-priority process is preempted and the high-priority
process is executed. A high-priority process is executed until it
completes or until it must wait for communication or for a pro-
grammed time delay.

¢ When no high-priority processes are available for execution, a low-
priority process may be executed. A low-priority processes is
executed until it must wait for communication or for a pro-
grammed time delay. In addition, to ensure that one low-priority
process does not monopolize the processor, a low-priority pro-
cess that has been executing for more than about one millisecond
is suspended. The suspended process is placed at the end of the
low-priority active process list and the process at the beginning of
the low-priority active process list is then executed.

2. Floating Point Unit
One version of the Transputer includes hardware for per-
forming floating point arithmetic operations. Internally, the floating
point unit includes a three-register floating-point evaluation stack that
operates in the same manner as the “normal” or integer processor's
evaluation stack. The floating-point unit operates in parallel with the
other components of the Transputer. Floating-point operations may,
therefore, be performed in the floating-point unit at the same time
that integer calculations are being performed in the integer processor.
Currently, only the Transputer model T800 includes this floating-
point unit.
3. Links
The hardware links provide the means for implementing CSP
communication channels between processes executing on different
Transputers. A link from one Transputer is connected to a link on

another Transputer to provide a bidirectional pair of communications

14

W I R e Cat - - A N e - ¢ N

.................

s

R AR L A X 4

S o

7.

I’ 4

‘N

|

.,..
P i o
S

L4
a

Y i Aad
%

T AL,

P

channels. Each hardware link can perform simultaneous, independent
input and output communication. Instructions are included in the
Transputer’s instruction set for performing input and output opera-
tions using the links. A block diagram of a communications link is
shown in Figure 2.6. Each communications link consists of an inde-
pendent direct memory access controller and serial communication

logic.

DMA Controller

Serial Output

Message Location Controller

Register

Message Length
Register

Serial Input

Resume Process Controller

Pointer

Figure 2.6. Hardware Communication Link ical Block Di

To perform a communication via a hardware link, the com-
munication link address and the size and location of a message are
specified, then the communications instruction is executed. This ini-
tializes the direct memory access controller with the size and location

of the message to be communicated. The process executing the

\ Pty \._\..:.._-.__-\,-.'.-. Y -'f\.#:"f:'..'\.‘:"l-'(-".r‘.-_' ~

[3

N

[

‘-(‘& ;

":i ‘1{*’"’5'

T VK WO

TV W W N W WV WP WP W F WS TRV WU WU WU WO N

communication instruction is suspended and a pointer for later
resuming the process is saved (another ready process from an active
process list may then be executed). When both the sending and
receiving links have been initialized in this manner, the message
communication is accomplished. When the communication is com-
plete, the process which was suspended for communication is added
to the end of the appropriate high- or low-priority active process list
to wait its turn for execution.

Messages are transmitted by the links one byte at a time in a
bit-serial format. After a receiver has recognized the reception of a
byte and is capable of receiving another byte, the receiver transmits an
acknowledge message. The transmitter will await reception of the
acknowledge message before transmitting the next message byte.
Since the link hardware performs no error checking on messages, the
purpose of the acknowledge message is solely to control the flow of
message bytes between the links. Figure 2.7 shows a formatted mes-

sage byte and an acknowledge message.

Data Packet

\
)
4
]
]

p—y
-
P
csoes

b 0 o -
o

2 Start Bits 8 Data Bits Stop Bit

Acknowledge Packet

N
< | 0}

Figure 2.7. Serial Communication Link Protocol

16

A N Mg e 3 e N S N NN T e T S S

- -
O™ = o

-
X

T AL
N

ot

e nsesn e 34

Y

OARAY

e

Viarhats

RIS

A method for communicating between processes executing

on the same Transputer is also provided. To perform such a commu-
nication, a memory address and the size and location of a message are
specified, then the communications instruction is executed (note that
this is the same sequence required to initiate communication via a
link). When both the sending and receiving processes are ready to
communicate, the communication is accomplished by performing a
memory-to-memory transfer of the message data.
4. Memory

The Transputer can address four gigabytes of memory. This
memory space is divided into two non-overlapping segments: an
internal or on-chip segment of memory and an external or off-chip
segment of memory. Although these two segments of memory are
logically the same, the physical characteristics of the two segments
are quite different.

The on-chip memory consists of up to four kilobytes of static
random access memory (depending on the type of Transputer being
considered). Within the address space, the on-chip memory occupies
the lowest block of addresses. The on-chip memory can be accessed
for read or write via the internal processor bus in one processor clock
cycle.

The off-chip memory forms the balance of the address space.
The off-chip memory is accessed via an external memory interface.
This external memory interface provides access to the external mem-

ory by multiplexing a 32-bit address and 32 bits of data onto a single

17

L e e e o e e I D D

e

NN ORI T T Y ol "l 0 220 Va0 Nl 00 00" 00" hE G g A AV aRE aTh’ ot ar i b~ et aWar IR A\ ataval g% tav 806 DV $.% Gob §a0 ¥ B 0 002 60 8R40 B° '

32-bit external bus. The timing for this multiplexing slows access to ’ ::
the external bus to a minimum access time of three processor clock :.
cycles. The actual number of cycles required to access external mem- i
ory is also dependent on the requirements of the external memory :
devices. For the Transputer systems available in our laboratory, the t
external memory access times range from three to five processor "f
clock cycles. This difference in access times between the “fast” on- :
chip and “slow” off-chip memory can affect program performance. ,
Frequently accessed variables or code segments should, therefore, be '.,":‘.
preferentially located in the “fast”™ on-chip .u.emory. ':,:j

Additionally, the external memory interface includes control ':

logic for refreshing external dynamic random access memory devices.

Control lines and signals are also provided to facilitate peripheral

R "

device direct memory access to the external segment of memory.

2.
5. ZTIimers 3
Yo
The Transputer provides two hardware timers. Each of these :}"
l."

timers can be viewed as free-running 32-bit binary counters. One of

the timers is accessible to high-priority processes; the other timer is

accessible to low-priority processes. The high-priority timer incre- %
ments at intervals of one pusecond, for a total cycle time of about 72 o
minutes. The low-priority timer increments at intervals of 64 '3:-
useconds, for a total cycle time of about 76 hours. :.:
Instructions are provided for initializing the value of these }
timers and for reading the current value of a timer. An instruction is P
also provided for suspending execution of a process until a speci..ed EE
.
o ¥
]

18 .

O T O RO R O O I O R I O oo T LAt 60 b Sl Sap A SEN XA

SO LNGhM

timer value is reached. To implement this instruction, the Transputer
maintains a linked list of suspended processes waiting on timer values.
Separate lists are maintained for the high- and low-priority timers.
These lists are ordered by the specified “wait-until” time value. The
first “wait-until” time value in each list is loaded into a dedicated reg-
ister and, using hardware, is compared with the current value of the
high- or low-priority timer. When the “wait-until” timer value is
reached, the suspended process is removed from the timer list and is
added to the end of the appropriate active process list to wait its turn
for execution. The next timer list entry is then loaded for comparison.
6. External Event Input

The external event input on the Transputer is similar to an
external interrupt input. To the Transputer, this external event input
appears as a communications channel which is capable of transmitting
a signal to a user’'s program. A user’s program requesting input from
the external event channel will be suspended if the external event
input is not being asserted. Then, when the external event input is
asserted, the process will be added to the end of an active process list
to wait its turn for execution. Either a high- or a low-priority process

may request input from the external event channel.

19

LR R O R O et o i O L T A Y A o

b Tl

II1. PUTER PE E

A. OVERVIEW

As has been described in the previous chapter, the Transputer is a
complex microprocessor. Because of this complexity, the perfor-
mance of even a single Transputer can be affected by many factors.
Such factors might include whether or not the program and/or
associated data is in on-chip or off-chip memory or if there is internal
bus contention resulting from external communications link direct
memory access. When considering a network of Transputers, the fac-
tors that can affect overall network performance are multiplied con-
siderably.

Developing efficient Transputer-based systems in the face of this
complexity requires a firm understanding of ’fransputer performance
and the manner in which different factors influence that performance.
Evaluating Transputer-based systems requires accurate methods for
measuring the performance of individual and networked Transputers.

To begin to understand Transputer performance characteristics
and to gain experience in measuring individual and networked Trans-
puter performance, a series of timing and performance studies was

conducted.

B PRIOR RESEARCH
INMOS provides basic performance specifications for the

Transputer [In87b and In87d]. The basic specifications list the

N A RR PR AT E AR P TR AY FF P FIR

)
~

ARG CH AT G CR TR LG AR LTINS TN T 'ﬁt&-:éﬁl{;{l&&ﬁg

0 0.0 0t mat s 0% 6% 050 A% BVa 6V » T VAL VAt Tal tab it el bg Wb uan A 4ot Ul Ve p B e 00,000 0 0, 2 “a¥0 ath gl ot ala ua' ha® RAY g OO PO .".i"

;@

o

53{'

performance for individual machine-level and high-level language Ry
operations. The listed specifications consider the effects of some of :
the factors that can potentially affect performance. While it is ::'.:
expected that the manufacturer's performance specifications are :‘:';
accurate, it is necessary to independently confirm this. ::!
Prior theses [Va87 and Ha87] document some detailed tests and 2 '
analyses of Transputer performance. These theses point out, however, E::i :
that some aspects of their performance test results do not appear to o '
be consistent or cannot adequately be explained. They suggest that ‘::':?::-'
further research be performed in this area to resolve the identified .::;'.:‘
problems and to extend the scope of performance testing. ‘ 0
.5
C TEST METHODOLOGY ',E
This chapter documents the suggested further timing research ;’35

. and documents the results of an initial set of timing tests on the -__.
recently released T800 20 MHz Transputer. Two major categories of ;_E
testing are addressed. The first category is testing to confirm the :51
basic manufacturer’'s performance specifications for the Transputer. N
The second category is testing to determine the interaction that exists :':\
between the operation of the central processing unit and communica- E" g
tion link direct memory access activity. I:g}
1. Con tion :E"
To accomplish both types of testing, a single test configura- ;CE
tion was developed. The test configuration consists of a central ;2
“target” Transputer and four “satellite” Transputers, each attached to E“-F
the target Transputer by a communications link. In addition, there ::'
-.
21 $§
G

Ry
)

3

o
Ny O e | e v] O e N Y (w L I PR VA I VL VS) M A " TR T " e " ™ P o = "R T A AT AT a4 « e,
‘l".‘h‘. CAS AN 8,50, SAGH l‘- W, 3 L) o.‘n ..o .c l.. .', .Q, » 4%)’ < N . “. W * ol . e P J' ’ f f.‘-f'-"\ 3 -“\n ‘.-'*

Ot O

"5

el

1,9 ¢ a8 09 N5 (X S AR Y AJ ("l""" '."""' r W YR Cm N \-__.___ ,_‘_-,\qu

-

]

~
: d

are associated Transputers which perform the functions of control and '.'_
’

of data routing and recording. A logical diagram of this test configura- ;
tion is presented in Figure 3.1. A detailed diagram of the test set-up is n
presented in Appendix A.)
-,

o

Data Satellite -
Collection Processor]

';-“

1]
at
(]
A
Satellite Satellite o

Processor Processor ;-"
A

' Host System A
I-';

Satellite)
Processor oy,
)

-
Figure 3.1. cal Di fT nfi ion |
b

$

Although based on and quite similar to a previously used test N

s

configuration [Ha87], there is a subtle but significant difference
between the two test configurations. In the prior test configuration,
one of the satellites was the Transputer inst'led in the host develop-

ment system. User programs executed on the Transputer in the host

'v l_"."‘.{\'—";’ﬂ{s‘-. '.).

o

development system are run from within the Transputer Development

System (TDS) “shell.”

P

22

‘;n ‘)'J - ‘!""-,'/}’f

N A A LN YN Ny T e Lo S N S S et e o o T YA S A P Pt S

1)

%

SO O ORI OO 8o Sal ¢af ¥, TR R, P 9 T N O S T IV Y Y DY Y TV Y N I YY)

After some initial experimentation, it became apparent that,
in some way, this shell affected the timing of programs run from
within the shell. The timing of programs running on Transputers
external to the shell but depending on communications to or from a
program run from within the shell also appeared to be affected. It is
postulated that some shell processes are active while the user pro-
gram is executing and, to an extent, interfere with the user program.
References to such processes can be found in [In87a].

Although it may be of interest to research this aspect of TDS
in the future, it is sufficient for the purposecs of the current timing
tests to simply ensure that all timing measurements are performed
external to and independent of the host development system
Transputer.

2. Software

In general, the target Transputer performed some calculation
in a loop while the satellite Transputers placed different link input
and output communications loads on the target Transputer. The test
software monitored the time required to perform link communica-
tions and the number of calculation loops that could be performed
during those communications. Appendix A provides a listing of the
programs used to measure and record processor performance.

3. Conditions
Because so many factors can interact and affect Transputer

performance, it was necessary to set and hold some test conditions

fixed so that the effects of variations in parameters of interest could be

YL

I"

PR 2% I BR P 0 4
PAdr A Pk ol A
P o R -

PN NN AN

©
v a4

AR g Y N ¥ » .
" VuWoWe Yo wUD

properly interpreted. Constant for the tests documented by this

thesis were:
e T414 Transputer processor speed was 15 MHz.
e T800 Transputer processor speed was 20 MHz.

Communications link speed was fixed at 20 megabits per second
for both Transputer types.

Program code and scalar variable values in the calculation loop
were located in the “fast” on-chip memory for both Transputer

types.

Scalar variables in the calculation loop were in “local” scope (i.e.,
within the first 16 bytes of the bottom of the workspace and
accessible by single byte load and store instructions).

Memory-to-memory transfer blocks were located in “slow” off-
chip memory for both Transputer types.

Communications data blocks were fixed at 100,000 bytes.
Because this block size is much greater than the size of the on-
chip memory, the block was located in “slow” off-chip memory
for both Transputer types.

Communications processes were run at high priority and the cal-
culation loop was run at low priority.

Time measurements were taken in the each Transputer using the
high-priority one-usecond resolution timer.

The effects of varying certain parameters of interest were
investigated. The following list identifies the parameters of interest

and the manner in which they were varied.

* The characteristics of the target Transputer calculation loop were
varied by placing different types and numbers of operations within
the loop. The operations used within the loop were no operation,
assignment, addition, subtraction, multiplication, division, and
100- and 1000-byte memory-to-memory transfers. The number
of individual operations of a type in a loop ranged from O to 4
operations per loop.

\

0

B s i N e ¥ . " k% m " P K TR YA
<0’|. & ‘o. 4. ,.-f' .0- » 0. 8% 0%,

Y ia® UAP RS (v G0 € 8 ga% ua¥ $n¥ he® Lg% faV At Ba® 8% ub Batopet 12t eV gat Qab et g0 gat Qa¥ Gui g0 g 6 0ab fad Yot G20 gab S0t §ut ot 8" 0d '), By0 Ba® Bad 0u 0¥ fa? b2l 15 haf® Rl got g0 ga0 "

| e
| a4t
. ~
t ¢ Communications conditions were varied by changing the number ey
} of links that were active at one time. Additionally, the communi- c::
} cations conditions were varied by changing the size of a commu- o
! nications packet. The number of active communications links)
; ranged from O to 4 input links active and from O to 4 output links ARy
active. The individual data packet size was varied in 16 steps Y

from one byte per packet to 100,000 bytes per packet with an -
overall constant data block size of 100,000 bytes. Y

4. Data Management

From the number of possible combinations of test conditions,

2
2

it was clear quite early that these timing tests would generate a large

Ve st L L4
.ﬂ":.‘%

amount of test data. To more effectively handle this test data, it was

decided to record the data in some database management system. .:‘:%
Using a database management system provided for ease of access to :é:'?
selected aspects of the data. Additionally, since the potential exists ‘
for performing further timing tests, such a system will facilitate the EL
incorporation and aggregation of any future timing data. E

Since the Ingres relational database management system was ‘_9\'
readily available on the departmental mini-computer, this system was ;&‘
selected for use. To facilitate loading of the timing database, condi- ;’i
tions for a particular timing test and the test results were directed to ‘T »
a disk file on the host development system, then electronically trans- :5-
ferred to the departmental mini-computer for loading into the Ingres gf‘
timing database. Appendix B describes the Ingres database created for '
the timing data and gives some examples of accessing timing informa- :ﬂ
tion from the database. l'::

b 0 0 b 0.0 0al 6.8 %o Pal Ya® Vat teh Hat Bab VAl Vay all ool Sab ¢ad Vay g Vet a® o al val o Aa Vo Rl RV "al "ave g¥u Ve aVe" Y2 A% B0 890 2'2.0°2.0° 24" 8 0t ‘Bab’ 000 0 88 B Bt 8.8]

e XA

)

D. TEST RESULTS ,
Test runs covering the range of conditions described previously _i
were compieted and the resulting data was loaded into the Ingres :\
j timing test database. Data was extracted from this database to “view” :_
several aspects of Transputer performance. These aspects of perfor- r’
mance are: o
1. Isolated Processor Performance :
The first view of the timing results is to compare measured g
instruction execution times with the manufacturer’s specified instruc- \
tion times for a selected subset of Transputer instructions. This is '
intended as a confirmation of the manufacturer’'s stated execution }_
times. Additionally, if the timing results are consistent with the man- !,
ufacturer’'s specifications, it will tend to validate the timing test !
methodology that is being used. }'
Determining the manufacturer’s specified execution time for %
a selected loop operation requires that the operation be examined at :
the machine-language level. Using a disassembler [Br87] to facilitate ;
examination of the timing program object code, each of the selected N
operations was decomposed into its machine-level components. The ﬁ.\
manufacturer-specified number of processor clock cycles for each of E
these components of an operation was summed, then multiplied by !v
the period of the processor clock. The result of this calculation is the :"."
expected execution time for a particular loop operation executed in
on-chip memory. For example, the expected execution time for the !:
multiply operation is determined as follows: :
L3
2% 3

-

e

d
e e e T S e T

" " " oy TV T TR TN TV TR ’ T ORI TR RO
e 1074 6 1 91876, 2% AUICAN SNSRI S WIS ¥ A5 S A TAR SSRY G A BavA DAY Lipin NN Dm0 000 0 00 00k e 020 A Ba b a0 A0 Y b O WK s

Multiply Operation:
a:=b*c

Machine-Language Equivalent Multiply Operation:

1d1 b (2 cycles)
1d1 c (2 cycles)
pfix; mult (1 + 38 cycles)
stl a (1 cycle)

Execution Time Calculation (T800 @ 20 MHz):

44 cycles x -O—'%%%l":—eg = 2.200 usec

Note that execution of instructions in “slow” off-chip memory
affects the calculation of expected execution times. To determine the
expected time for such an off-chip operation, the same basic method
described above is used, except that a separate accounting of on-chip
and off-chip cycle counts is maintained. The off-chip cycle count is
then multiplied by a hardware-dependent scale factor. This scale fac-
tor is the number of processor cycles required to make a single access
to the off-chip memory. In the case of the hardware used for these
timing tests, this scale factor is 4 for the T414 Transputer and 5 for
the T80O Transputer.

In addition, in the particular hardware configuration used for
these timing tests, off-chip memory consisted of dynamic random
access memory devices. Such devices must periodically be
“refreshed” to maintain their data. Although this refresh operation is

relatively fast and is handled automatically by the Transputer

27

T N I I T I B N I N N e N N T e N N N e N R S L AN G AT A Y,

15

=

® IS PRET

k o
.,
o

B AR A A

P ok PR sk ¥ I]
'~

r.
'
55 0K

oy

¥
A

R rs X RoAs
| B ’(“. A -"__?,f._ '@ % -.'-‘,A-‘

& S

el

-y
v %
['d

.'..“,'.-“,‘a_.-‘s|....v‘~.~ 28,0 S W L T T T N R R TSN N $avo0a® 0% fat ot §at 0a® Rat iut ot Sut g g ¥ § §pt §p* ' 02 5. 12t

hardware, access to the off-chip memory is restricted during a short
period of time. In the worst case, this increases the average time
required to access off-chip memory by a factor of 1.0237 for the T414
Transputer and 1.0213 for the T800 Transputer [In87b]. The worst-
case overall time for an off-chip operation is, then, the sum of the on-
chip time and the scaled and “refresh delayed” off-chip time. An
example calculation for execution of an off-chip memory-to-memory
transfer follows:

Memory-to-Memory Transfer Operation:
[array FROM O FOR 1000] := [array FROM 0 FOR 1000]

Machine Language Equivalent Operation:

pfix; pfix; ldc #$800 (1 + 1+ 1 cycles)

pfix: mint (1 + 1 cycles)

wsub (2 cycles)

stl temp (1 cycle)

pfix; pfix; ldc #$800 (1 + 1+ 1 cycles)

pfix; mint (1 + 1 cycles)

wsub) (2 cycles)

1d1 temp (2 cycles)

pfix; pfix; ldc #$3ES8 (1 + 1+ 1 cycles)

pfix; move . (1 + 8 cycles maximum

500 off-chip cycles)

Execution Time Calculation (T414 15 MHz):

29 cycles x &%%?-9 = 1.933 usec

28

SR b

S f W o o

B Tt

SR AR AR,
- b

i

R L e
\ b

1 & -

FIAT T EITTAN prETT TN,

T8 0 0,0 Vo Vo Vel Vel Yol Vat teda Vel o B SR CRT AV Ty gva $0a 80" 4% AV G SR DR D R 8D D B B B® Bat B Ba e Bt

g AN =

‘t
500 cycles x O'%?,;:ec x (4 x 1.0237) off-chip = 136.493 psec 3
:
3
1.933 usec + 136.493 usec = 138.426 usec maximum L\

Measured execution times for different operations were

derived from the timing data as follows: % '
4
¢ Consider only timing data where no external communication links i
were active. f-

b
e Calculate the average time per loop for a test set with no opera- X,
tions in the loop. (The average loop time is simply the time of vy
measurement divided by the number of loops executed during b
that time.) t}i

¢

* Extract the average time per loop for a test set with 1, 2, 3, and 4 B
instances of a selected operation in the loop. w3

* Subtract the no-operation loop time from each of the selected E:‘
operation loop times. These loop times have now been “adjusted” "

to remove any loop overhead time.
* The incremental increase in adjusted loop times for the selected -
operation loops is the expected time required to perform a single)_-
operation. 4
)
Tables 3.1 and 3.2 list the expected and measured execution
times for the selected loop operations. These results show that, ‘J-
U
except for the divide operation, the measured results are consistent !
bW

with the expected results. The expected time for the divide operation :
?

is based on the operation taking 39 processor clock cycles [In87d]. ;
The measured results indicate that the divide operation takes 38 pro-]:
‘l‘

cessor clock cycles. Subsequent to performing the timing tests, it was ~
=

confirmed with the manufacturer that the divide operation, in fact, :.':
takes 38 clock cycles as measured in the timing tests [Pe88]. ._':
3

29

n"

ke

.ﬁ

s

TR

d

b
AT AT A AL LABANR ALY AR ML CAA AR R Lt

i

R TP T TN R A

.......

{4
TABLE 3.1)

T414 EXPECTED AND MEASURED ; A

INSTRUCTION EXECUTION TIMES o

’
2

Operation |Operations| Test Loops Loop Measured | Calculated '
per | Duration | During Time | OpTime | Op Time)
Loop (usec) Test |(usec/Loop)| (usec) (usec)

o
Null Toop O] 1000014] 214133 157 3
Assignment | 1000013| 205352 7.87 0.20 0.200 el
2| 1000014| 197246 5.07 0.20 Y

3] 1000011} 189755 5.27 0.20 >
4] 1000012] 182813 5.47 0.20 o
Addition 1| 1000013] 197246 5.07 0.40 0.400 0y
2{ 1000012| 182813 5.47 0.40 o
3| 1000014] 170349 5.87 0.40 o

4 1000011] 159475 6.27 0.40)

Subtraction [1000013[197246 5.07 0.40 0.400

2| 1000012| 182813 5.47 0.40 {s

3| 1000015 170349 5.87 0.40
4| 1000011] 159475 6.27 0.40 2
Multiplication I| 1000011 131497 7.61 294 2933 N
2| 1000016] 94878 10.54 2.94 Al
3| 1000022 74212{ 1348 2.94 P,
4 1000017] 60938 16.41 2.94 N
Division 1| 1000013 129230 7.74 3.07 3.133 !
2| 1000012| 92535 10.81 3.07 o
3| 1000018] 72071 13.88 3.07 o

4| 1000022 59019 16.94 3.07 .
Block Move 1| 1000030] 50711 19.72 15.05] 15516
(100 Bytes) 2| 1000036 28773 34.76 15.04| (maximum) o,
3| 1000042| 20077 49.81 15.05 5

4] 1000074] 15433 64.80 15.03 D

Block Move T[1000117 7007 142.73] 138.06] 138.426

(1000 Bytes) 21 1000100 3562 280.77 138.05| (maximum) T
3| 1000056 2388 418.78] 138.04 NG
4 1000066 1796 556.83] 138.04 ::

::;Z
P
W
NS
3

[
30 G

4
g
o

)
o i e R el it et L e e A o R e e o e S e e)

TABLE 3.2

T800 EXPECTED AND MEASURED
INSTRUCTION EXECUTION TIMES

Operation |Operations| Test Loops Loop Measured | Calculated
per Duration | During Time Op Time | Op Time
! Loop (1sec) Test |(usec/Loop)l (usec) (Lsec)
p
; Null Loop 0f 1000009] 285581 3.50
s Assignment 1} 1000010} 273845 3.65 0.15 0.150
y 2| 1000008 263035 3.80 0.15
3| 1000009 253038 3.95 0.15
4] 1000010] 243789 4.10 0.15
A Addition 1] 1000008] 263035 3.80 0.30 0.300
) 2| 1000011f 243789 4.10 0.30
3| 1000010| 227167 4.40 0.30
41 1000011] 212667 4.70 0.30
Subtraction 1] 1000009] 263035 3.80 0.30 0.300
| 2| 1000010] 243789 4.10 0.30
y 3| 1000011] 227167 4.40 0.30
¥ 4] 1000010} 212667 4.70 0.30
X Multiplication 1| 1000011] 175357 5.70 2.20 2.200|
2| 1000015] 126524 7.90 2.20
3] 1000012 98964 10.11 2.20
‘. 4{ 1000010 81263 - 12.31 2.20
% Division 1[1000013} 172334 5.80 2.30 2.350
; 2| 1000015| 123400 8.10 2.30
f 3| 1000009 96109 10.41 2.30
4] 1000016 78704 12.71 2.30
Block Move 1] 1000013 57789 17.31 13.80 14.16
(100 Bytes) 2 1000009 32118 31.14 13.82|(maximum)
: 3| 1000044 22262 4492 13.81
; 4 1000036 17037 58.70 13.80
! Block Move 1| 1000012 7558 132.31 128.81] 129.110
; (1000 Bytes) 2| 1000099 3830 261.12 128.81|(maximum)
31 1000100 2565 389.90 128.80
4] 1000524 1930 518.41 128.73

2. Isolated Communications Link Performance
The Transputer manufacturer also provides specifications for

communications link performance [In87b and In87c]. The measured

31

:‘.‘*\ ..“l‘.‘l'\ £ v ; ** ~ . "h X -." o . .d.'(-‘..‘;' [l‘ " """ .{ 'f X (* ‘* ' G ' .V ‘ '~ ‘{." s' $" q 'ﬁ- . I“. 4 “' "' -..~ . y O...l hd

<gd val ¥ LY Y PR U T R T A TN R e $a¥ 200 o - "y ha~ diat dat et dg

performance of a communications link can also be calculated from
timing test data. Measured communications link performance is cal-
culated by dividing the size of the largest single data block communi-
cated over a single link by the time required for the communication.
The largest block size was selected to minimize the affects of any
communications set-up overhead that might exist. For the timing
tests performed, the largest block size was 100,000 bytes. The speci-
fied and measured communications data rates are compared in Table
3.3. This table shows that the specified and measured data rates are
consistent.

TABLE 3.3
ISOLATED COMMUNICATION LINK PERFORMANCE

Processor Communication Specified Rate Measured Rate

Type Mode (Kbytes/sec) (Kbytes/sec)
Input 800 759

T414 Output 800 762
Input/Output 1600 1505
Tnput 1740 1738

T800 Output 1740 1737
Input/Output 2350 2344

Of particular interest here is the bidirectional data rate for

the T800 Transputer. For the T414 Transputer, the bidirectional data
rate is approximately 2 times the unidirectional data rate. For the
T800, however, the bidirectiona! data rate is only about 1.35 times the
unidirectional data rate. Since in the worst case of the external off-

chip memory the processor bus data rate is at least 20 megabytes per

32

Ao n TR RO AR AR R

e R e et

o TR A
O

oy

-
-

*

b
[P Ly

G X w ‘({, I:l‘f.’fn,(.)

AR

PSS
'_5‘1‘4’: .'5_,

T I ap

u_x
LY

LLET® 5,

g

3

i
3
-@
2R
A
second, accessing data from memory should not limit link perfor- v $:
0
mance. Taking a closer look at the link communications protocol "'
provides the key to understanding this problem. ':
i
In unidirectional communication for the T800, the acknowl- "
Bt
edge packet from the receiving Transputer is returned to the trans- ey
T KR
mitting Transputer before the transmitter completes its transmission. ..t-
Because of this, the transmitter is able to transmit bytes “head-to-tail” 0
e
without any intervening delays. This results in a maximum theoretical ¥ ° '
unidirectional data rate of ':j:,:"':
0'1
o
20 Mbits 1 byte _ 1.82 Mbytes !
sec 11 bits transmitted sec e,
®
s
which is consistent with the actual unidirectional link data rate. In :$ \
!
bidirectional communications, however, each Transputer must :‘Q#
‘hB
“sandwich” acknowledge packets between data packets. This e
r\-“,
increases the total number of bits transmitted by a Transputer per ;"-,
)
data byte from 11 to 13 and results in a maximum theoretical bidirec- ;::'. :
A
tional data rate of ﬁ
20 Mbits 1 byte 9 = 3.08 Mbytes .:::
sec 13 bits transmitted * < = sec e
X
i
@
This is less than double the unidirectional rate. Additionally, =
.I
because a receiving Transputer is also transmitting its own data, it may ',‘&)
*
not immediately be able to return an acknowledge packet for data " "
@
received. The transmitter may, therefore, be delayed in transmitting o
e
its next data byte, further reducing the data rate. However, since the ;::
LY
5
..\
@
o
e
a::::
-
"y

-,
N
o)
' 5 _;.(:'.r 'C:I .r: I‘: fn"w .r.)_.r . wﬂf._q': a:&.-\y\ ‘

P

P

o Wa v W el Nl tad Vo el tad Yl fa ey Vol Eah ol il Sl Sob a Sl Vol Cul Snb Nop il

internal timing threshold requirements of the link hardware are not
known, it is not possible to exactly quantify this effect.

Because of this bidirectional link communications limitation,
two separate unidirectional communications links between T800
Transputers will provide about a 1.1 megabyte greater bidirectional
communications throughput than will a single communications link
operated bidirectionally.

Since the T414 unidirectional communication rate is signifi-
cantly less than the maximum possible rate for a 20 Mbit/second data
link, space already exists between successive transmitted packets to
“insert” an acknowledge packet for a received data packet. Because of
this, the T414 does not show the prominent bidirectional
communications protocol limitation shown for the T800.

3. Communication Link Interaction

Prior research [Va87] has shown that, for the T414 Trans-
puter, there is minimal interaction between links when multiple links
are operated simultanecusly. It was desired to determine whether
this is also a characteristic of the T800 Transputer with its greater
communication link data rates. Figures 3.2 and 3.3 show communica-
tions link performance for both the T414 and the T800 under condi-
tions when multiple links are active. Except for the bidirectional
protocol limitation previously discussed, these figures show that there
is minimal interaction when multiple links are being operated. Note
that in Figure 3.2, the number of links active includes both unidirec-

tionally and bidirectionally active links. Because of this, each number

34

WAE. RN, L + §%. e 50, 5) 5P T G W B 377 By At ot

=~ . . 1 LAy A AR L VSRS R Pl N e IS S Y AP AT APy - I T 2 b .
a .o.. !s’ll"!l'...'.ill X o ”"; . ..‘ o L Vv 5 oco. L Ve A% .M‘." ps

- ~ Y W ®
BN N

P A

- -

& "v; 4 .:«[1"-7’ >

N

[

- o o
B Gy N N

o L

»

S| T RIANIT e

o,

x| &

<

) l’".t. RN PR R AR R AT AT R Eal Ul dad Sau el tag sal ial TRY TRP ERl tat Al saB veh g0 ale Ve Vo gta AVedin 3% A's Aa 8°2 4% A R % . Iy ig #%p.8 .‘..‘:6:
‘l
Yl
%
. \
3
I”FI.
of active links may include more than one data point. For example, S-_';?.
.(\-
two links active on Figure 3.2 include the data points for both the case R,
when two unidirectional links are active and the case when one bidi- i'\."‘
. 1 . 4
rectional link is active.
T
1000 NG
E_ oo i
— Iy ‘.
-2 I A B B B 5
=] 4
©2 600 A
£8 C
= 0 iy
T2 4001 e
c o] "‘Q‘
2=) %
(& h aele
0 2.
0o 1 2 3 4 5 6 7 8 9 g
Active Links N
3
Bt
. Figure 3.2. T414 M le Link Effects on Communication »
>3
NG
- N
F*'
2000 oy
@] } ! i ! R
T]
o 1 v
s £ 1500 .
s £ J 1
35 j N
0 C "
c Q b t
2 g 1000 l
o 0 9 *_
2 > 500 - @ Unidirectional | e
g =~ 1 e Bidirectional AN
] ||
I\..
0 T T T ,-_'::
0 1 2 3 4 5 6 7 8 9 » 5
Active Links b
RS
Y
o
"
Figure 3.3. T800 Multiple Link Effects on Communications Rate =~
)
®
35 -
,':‘-, {
73
L%
L4

|“..
N i T P D R S T A L S S S S S

o W, o P A RS NI U Oy SOy o '« T A T T A e N e T e e e D e e
O o e T Ny e e e e S e N e e e N e e e

S 0t eat bt g a0t 875 1% % 0 4% S 90 3% AV s T Al “atoTal tat 0ay R, - e Ua0 a @ 0 U0 00 00 0 0" ") p'e a'h a¥p ati o¥g oty a tR' ke le®

Additionally, for the T414, it has been shown that individual
data packet size can affect the overall communications data rate
; [VA87]. In general, as the data packet size is decreased, the overall
communications data rate also decreases. This is because the over-
head time associated with the set-up of a data transmission is more
D significant when the size of the data packet to be communicated is
small. The current test configuration and software was used to extend
the scope of testing to further investigate this phenomenon. The
results of this testing for the T414 and the T800 are shown in Figures
3.4 and 3.5. These graphs, as well as others in this chapter, were
4 conducted with various numbers of links active. The number of links
active for a particular graph are identified on that graph. Figures 3.4
and 3.5 show that communications throughput decreases rapidly when
; the packet size decreases below a threshold point of from about 200
down to 50 bytes per packet.
Further, note the communications characteristics shown in Figure
3.5. This graph shows the protocol limited nature of bidirectional link
operations for the T800 Transputer. Compare the plots for the two
bidirectional links case with those of the four unidirectional links case.
In either of these cases, a total of four links are operating. As packet
! size increases from one byte per packet, the plots for both links are at
first identical. However, as the packet size passes about 20 bytes per
! packet, the two plots begin to diverge. The four unidirectional link
case data rate continues to increase but the bidirectional link case

becomes protocol limited and data rate levels off.

! 36 X
®

)

I'-

w

.J'

SR a0 TR NS s N PRSI T Bl Tt 3eF Bl BT F ¥ iy A AP 3P Ny N AN A AP AN A A A O
'-;~l- Soidais I0,] -.t*o. Ll)' .L‘l. 3 .”f O Sy i) 5 % Gt -‘..- D . .\"' \\'.'\'\ .. 3

800

600 // /

(Kbytes/second/link)

At
s

400 7]
)f

200

Communications Data Rate

—

10

T

Packet Size (bytes)

Links Active

-8 1 Unidirectional
-~ 2 Bidirectional
-3 4 Bidirectional

100 1000 10000 100000

Figure 3.4. T414 Packet Size Effects on Communication Rate

» 2000

1500

[

1000

bhbb

500

Communication Data Rate
(Kbytes/second/link)

1 10

Packet Size (bytes)

Links Active

1 Unidirectional
2 Bidirectional
4 Unidirectional
4 Bidirectional

100 1000 10000 100000

Figure 3.5. T800 Packet Size Effects on Communication Rate

‘*\""v*\ _.'\"1 NN -_.\-{ﬁ..v-,-.'_.\'.\._\-‘-_;_\-..'

R
Qe

37

T A o s A A A A AT VR AT A W Y

£y

J P s

2 X

P
gy

o 1
5 N
oY

A

= I C LA XARL

A

2500 B

r{)

e

> E g ~, ¥
SR e X AT

,a,ﬁi.v

v o e

P4
o WO Ny

o N AP

L9 4’,‘ _'."" .'-‘_'l ..I .'i

AN

PO

s

AL

-"\I

)

™ -u",‘vf -"‘"-" 'J‘v

VAt nalatakoal et Al et tat tetatat al, Saie

4. Communication Link Effects on Processor Performance

One of the key questions raised about Transputer perfor-
mance has been the extent to which communications link activity
interferes with processor execution speed. There are two ways in
which such interference can occur. First, both the processor and the
communication links contend for access to the same internal data bus.
Secondly, the set-up of a communication and the rescheduling of a
process upon completion of its communication require some proces-
sor overhead. Recalling the timing test methodology, where opera-
tions in a loop were conducted in parallel with a variety communica-
tions load conditions, timing data is available to address this issue.

For the purposes of comparing processor performance, the

average number of loops that were performed per unit time under

each set of test conditions was taken as the relative measure of target

processor performance. For each set of test conditions, processor
performance has been normalized by dividing performance measure-
ments by the “no communication” performance for that set of test
conditions.

Figures 3.6, 3.7, 3.8 and 3.9 present representative results
from this analysis. As can be seen from these figures, processor per-
formance drops dramatically as the communications packet size is
decreased below a certain threshold value. In some cases, perfor-
mance was reduced to the point where the processor made no
progress on its looping calculation; the processor was completely

communications bound.

PR v e Lt
AT T e "l ST

& O g Sy

0.8

0.6

f / Links Active
-2 1 Unidirectional

g

! - 2 Bidirectional A

0.4 /

:;.

F ot at

)
/ -+ 4 Bidirectional
[

“ ?&1

Normalized Loop Performance
(no operation in loop)

N,

0.0 f—-h-«-r

1 1

Tod

E
4

Y
; N\
534:0:

0 100 1000 10000 100000
Packet Size (bytes)

Figure 3.6. T414 Performance Degradation with No Loop Operation

oYy

,
s
v

o
)
‘_ux:
. 1.0)
P & ')
~= ~
08 w

;i

o

TN
AV
A\
1()
44
lr ®
-.:'.:5-.‘

0.6 / / Links Active]
-8 1 Unidirectional :C::

0.4 f / / ~&- 2 Bidirectional },-.
/ [/ -+ 4 Bidirectional e

® ?&."

Normalized Loop Performance
(4 divide operations in loop)

e
\Ns..
¢

o
(M)

s
s
r% %%

wrTY L T ™7 T

0 100 1000 10000 100000
Packet Size (bytes)

Figure 3.7. T414 Performance Degradation

N N P N NS N Ay A L L P T A AN O A,

S

with Four Divide Operations

e T N et
»!'.‘.f'.'f&,{ﬁ., o "' Vi

e
{v

39

[d gl
REAES

il

A}
[/

v
hY

-

R R T T T TR R P T T A AR XIS N fat,0e’ 02" $a® fa® g2k gat got 102% 2", Sa% 2% fa® fa' a0 0a% It “Pad Bt] MU M

W

1.0 T

0.8

=

0.4)(/

[| o

Normalized Loop Performance
(no operation in loop)

V.S,
-

0.0 W—drrirrgr =@ rndrm—rrrrrp—r—rrre

Packet Size (byte)

vree]

1 10 100 1000 10000 100000

Links Active

-2 1 Unidirectional
-o- 2 Bidirectional
=3 4 Bidirectional

e WY X R

Figure 3.8. T800 Performance Degradation with No Loop Operation

1.0

L g ar i A g

0.8 /){, o

0.6 }(/ !

Normalized Loop Performance
(4 divide operations in ioop)
o
E-
T
_t

0.2 / /

' |
4 B el

0.0 W—drmitrrgfirrdm

Packet Size (bytes)

1 10 100 1000 10000 100000

Links Active

-2 1 Unidirectional
- 2 Bidirectional
~F 4 Bidirectional

with Four Divide Operations

40

N N A N A N A N T N N A A A A N N R T U PR R Y o

Figure 3.9. T800 Performance Degradation

T N TR AT AT N AT N N N

AN A YA S T B Sciry

L

PESES

A

5~ 1

o=l

£ L

XX W B
K

SRS T 2

T

- 0

S AT ISR NS ST e P I I A

<

Ay
iy

’
ok Y

Mool a

Ay

N R P S O a4

In the left-hand region of the performance graphs, where the
individual data packet size is small, the processor overhead associated
with the communication is the primary contributor to performance
degradation. As the data packet size is increased, the time associated
with actually transmitting the data packet increases. As the actual
packet transmission time increases, the overhead associated with
communicating a packet becomes less significant. Therefore, when
the packet size is very large, any processor performance degradation
will be due to processor and communications link internal bus con-
tention. Towards the right-hand side of the performance graphs, pro-
cessor performance degradation can be seen asymptotically
approaching this bus contention-only degradation characteristic.

As can be seen by comparing the different performance
graphs, the type of calculation performed within the loop also affects
the amount of performance degradation. Although there is only a
minimal difference in the overhead limited (left-hand) area of the
graph, there is a noticeable difference in the bus contention limited
(right-hand) portion of the graph. In general, the difference in the
bus contention limited area of the graph is directly related to the fre-
quency of memory access required by the calculation loop. For short
instructions (such as assignment) that require frequent bus access, the
performance degradation is greater than for long instructions (such as
division) that require infrequent bus access. Figures 3.10 and 3.11

illustrate this characteristic.

41

B VT sy A L R £ R G A S B AR IR AN

..............................

Y VI TR TR TN UV Y WY SV VST W NN " AP AT W HW "N Ao " A A~ B F
[

"
Y
508
o

LELGEA O]

Pd

« ,'g::...
-

' -

e

Lo

2] ®

. 'v'_c' T AT R
"v'.l'_q'?.‘. ‘{:‘{'}

L
¥
Pails

o

¥ v L q X Pl i s .
S AR

2
O

D
“‘l(&(‘.‘-

»_x
Py
~

P g

S

A® 2y r 2
XAKAL S,

;;'.
1

i

-
>

W

o

”
rl

7

D B e =

)

o - - o

I s v
e

Loata%al "ataval, Yt el tad tap

0.0 '—c--vnmq—hj..,.

1 10 100 1000 10000 100000

Packet Size (bytes)

Figure 3.11. T800 Bus Access Frequency Effects

on Performance Degradation

42

R LA U ..'s._\.-.\

~'.~_.’-,‘-',.',',-=_-'.f —.r.'.".' -.r.'ffff v
o and

N P e N A A A IR A A AL

LAl Sl Al Tt B W W VoA AVt e iuntic ari g Wis ave gty SACaXA g¥a-ataaliato e o ie?. e Ja v AT RO
3
"
*d
1.0 y
U
® ¢ X
QO {
£
58 yan 3
S & 06] 5
a &] /’ -& Assignment ,
g o / -~ Division el
- X t
- £ 04 //
e = :
g s ik 3
QT o
E o2 3
Z D
0.0 et -
1 10 100 1000 10000 100000 :.
Packet Size (bytes) .!:
&
1
Figure 3.10. T414 Bus Access Frequency Effects 4
on Performance Degradation "
Y
bt
4
1.0 |
A
] "'
é 0.8 /”m’
E A v
- L)
23 /7 v
3‘: 6: 0.6 ;
a O / & Assignment N
8 = / - Division ~
a1 £ .
b o] ; 04 b
E '
5 0.2 .
Z

. Vs B N R N

N,

R P

Uap Yal Ve Yad Va

e 5% 1%]

Mg

800700 el ol G g R VR g, AN L “Ga Ual Gl Bal Gl R RN AT AT G A O A

5. Processor Effects on Communications Link Performance

As a corollary to the question of communications effects on
processor performance, it is reasonable to ask what effect an actively
executing process has on the performance of a communications link.
It might be expected that if the processor is slowed by the effects of

communication link bus contention, a communication link would also

be slowed by the effects of processor bus contention.

extracted from the timing database to determine if such effects did in

fact exist. A typical sample of this data is shown in Table 3.4.

PROCESSOR EFFECTS ON COMMUNICATIONS PERFORMANCE

TABLE 3.4

Data was

Data No Calculation With Calculation
Packet Size Data Rate Data Rate
(bytes/packet) | (bytes/second/link) | (bytes/second/link)
T414 1 23.561 23.561
10 226.078 226.072
100 705.184 701.262
1000 738.460 738.165
10000 742.242 742.975
100000 747.049 740.988
TS8O0 1 31.415 31.415
10 282.415] 282.416
100 1120.561 1112.013
1000 1166.943 1165.773
10000 1171.413 1171.097
100000 1171.866 1171.646

Table 3.4 shows that the effects of processor activity on
communication link performance is not significant.

this is that, when the communicating process is of an equal or higher

NAS A AT AN WA

v Wy v

' 1) ‘f ‘..:-‘ ALY -)‘- ».-

43

The reason for

WO Y,
J o b.f l-", (‘.(;'1'
ot

g (gt 4
vl(l,l. {A‘ Ty

|

[-

X s X _E_u
LA L2

2

‘n‘ ':'7 % Te
XXX D

Rty

[
>
l

LMD

Yy
-

)

@ PPITEN®

7

i priority to the executing process, the communication link has priority

s access to the data bus [In86e]. The communication link is, therefore,

virtually unaffected by bus contention. Bus arbitration priority was

::{. defined in this manner so that the lower bandwidth communications
n,!
W links would not be idled [Ha87].
0 6. Summary
Ky
% Through the timing tests that have been performed, it has
i\
& been seen that a strong relationship exists between the calculational
2 performance of the Transputer and the operation of its communica-
[
b tions links. Additionally, the size of individual communications pack-
L
" ets has a pronounced effect on both the calculational and communica-
o tions performance of the Transputer. Knowledge of these
’E characteristics can be used by the software designer to develop more
»
¥ efficient software.
1,
g
i
oy
.‘
w-
‘\\:
-
k’
i
L '
M8
5y
T
A W
B o
4
\: \
~!
KN 44
o,
) .'
’l- X
;Q
-,

’I
R LS R LY R R e P L I P R I Y PRI PR T R N T R P e L P LI S L VR TR TEN B AT m T AT ™
Wolat P, J"_ J' v RPN g - SOOI o { VL N s ‘ Lo .~ N I\.- ot N .J- o ,r) WG e

2 0a0 $at 00 5 6 gt e 50 6 gt Ral e 0% 8% 0% 0", w, . PR) a0 Al R W p el g g i R oy "Bl Wb a9 LR 00,000,040, T TR TSSO D)

|'§| ‘J‘ s

“.’ "' o .

IV. SHARED MEMORY MODEL PROGRAMMING INTERFACE

A. BACKGROUND

The concept of Communicating Sequential Processes as imple-
mented by the Transputer is one methodology for interprocess com-
munication and synchronization. An alternative concept utilizes
globally shared memory as a means for interprocess communication
and synchronization. A body of software and development experience
that makes use of this shared memory concept exists and could be
useful in developing programs for a network of Transputers. In
particular, distributed programs developed in the ADA language
environment use a shared memory model.

In a large network of Transputers, the physical connectivity of the
network is limited by the availability of only four bidirectional commu-
nications links per Transputer. This limited connectivity often
imposes restrictions upon the distributed systems software designer.
The software designer must be aware of and consider the physical
configuration of the network. As a result, the designer must often
work around the limitations that the configuration imposes. The use
of a shared memory model in a network of Transputers is one
methodology that might be used to isolate the software designer from
these physical configuration limitations.

These factors have motivated the development of prototype soft-

ware to implement a shared memory model environment in a network

45

LR R

e » 870,979 8%

LR W W LR LI LI WL LS e -t T - LR S L T T R R P
.- ‘-'al At.'i .'...l "’* 0.4%. 1% . § .rv‘r W .('{ -' r, J‘\f‘ \". "

@ AT
P)

,""'1 l.
SN N

PANAN RO

P

T g ¥ o s

- -

-

PN RN Y NERREEAR 0 a8 b ok Yol Yol uh wal 9a) Vel Uah 8 0ol ab Mk Tul Vull €t Vub Vult 0ah i bl k' "t

of Transputers. The purpose of this prototyping effort was to gain
experience in developing such a system for a distributed system. This
chapter describes the design, implementation, and evaluation of this

prototype.

B. EVENT COUNTS AND SEQUENCERS

When multiple processes are sharing a common resource, as in
the case of a shared memory system, some means must be available for
the processes to coordinate or synchronize their use of the resource.
One means for this synchronization is through the use of Event Counts
and Sequencers [ReKa79].

As its name implies, an event count is a value representing the
cumulative total number of events of a particular type that have
occurred in a system. An event count might be used, for example, to
record and monitor the number of times a particular shared memory
location has been written to or modified. Many separate event counts
may be defined in a system for use in monitoring different types of
events.

A sequencer is also a value representing a count. This count is
used to control the sequence in which events occur. Each sequencer
count value can be thought of as a reservation for a process to use a
shared resource. These reservations are issued in sequencer count
order to requesting processes. Processes with reservations are then
permitted access to the controlled resource in sequencer count order.
For example, several processes writing to the same memory location

may use a sequencer to ensure that only one process writes to the

46

e A R e A e T e AL B e e o U it A A el s Gy e S e e Qe

g 3 _a_a_a

-

.....

q"’ﬂ"'u-."'o. P 080 0 a8 0 SR Vel F 0 Tl Vel tab 2t Bad el Vo8 Pad Yok el 0a¥ vap eay S OVUY DV N O A A T Ow o o

location at a time. As with event counts, many sequencers may be
defined in a system to control access to different shared resources.

Several primitive operations are defined for event counts and
sequencers. These operations are:

¢ read(event_count)—The read operation returns the current value
of a specified event count.

¢ advance(event_count)—The advance operation increments the
value of a specified event count.

* await(event_count, count_value)—The await operation suspends
the process executing the await command until the value of a
specified event count has at least reached the identified count
value. Note that execution of the suspended process is not neces-
sarily resumed immediately when the specified count value is
reached. The process might not resume until some time after the
count is reached.

¢ ticket(sequencer)—The ticket operation returns the value of the

next available reservation “slot” for a specified sequencer.

. C IMPLEMENTATION

The model of event counts and sequencers was selected as the
paradigm for implementing the prototype shared-memory model.
Since a network of Transputers does not physically share any memory,
the implementation must make use of software to simulate a sharing of
memory. The core of the implementation is a distributed software
kernel which executes on each node in the network. Figure 4.1
depicts the general physical configuration of a network with this

kernel.

47

‘Bia §¥a 8", l.l.l.a‘*.;.

o‘.;
8

OISR

e

L

A’
J .'. of, A d

®

P PR
z WL N T e

PN 5 % 1,9
AN

-

X

- WW B A
(A4
x x ";f““{'\‘r

y 2

¢

P E
S

L A i

AR T
E]

ST S gl N gt g R At R R Y 6V 1 R

~, . - - -, L L]
" ¥avat

- 3]
iYL

Transputer 1

Distributed
Kernel

Hardware

Transputer 3

b\‘?n'

T St

g

g)

Transputer 2

Application >
Program . T
Modules e

Figure 4.1. Physical Configuration of Shared Memory Kernel

The kernel contains the system's shared memory and maintains
the system'’s event count and sequencer values. The system’s shared
memory as well as the event count and sequeacer values are appor-
tioned amongst the kernels operating on different nodes. The kernel
also “hides” the specific physical configuration of the network from
the application program by managing all communications between

program modules and network nodes.

48

Figure 4.2 shows the

g':xx-l-
.- g
-

el

T
R 3

v

.'.-‘_4<.
2 AT

S W AN Y Y
' --J‘..}— ’-,..'9..-'.‘.}1'

KXt bt & LS

’
{‘n

Wy T '-'{-“\V';-' o' S ('\'J‘_‘J‘

MOl D -

267 82 0% da"a 1o, fn a0a%aa s st a2 00’ Ma V2t 00" Y A9 Qa0 a0 100 pat Qa¥ gV, W gat 0a8 PaB at het a8 BaT ot Qe gn® e eV Bal Gu Rab a6 fob hal BaP Ue8 Ba0 fot.

4
[3
‘
T
13
9
.
r.
s
r
«
:
[
]
:
b
h
-
1
L
.
.
-

v e

. &

v8 T LAt

f‘./."

distributed application program’s view of the kernel. A detailed

description of the kernel is provided in this section.

o

o Al
-

T,

-
-~ —..-:

yl

—

ssssss

S o

T

A

o "o

Application
Program
Modules

N r LR,

Distributed
Kernel

“Hidden" 2
Physical o
Configuration ¢

Figure 4.2. cal Configuration of Shared Memory Kernel

The prototype implementation also includes a library of proce-

Fas ot & »
- 2 o

dures for interfacing with the kernel. This library includes the basic
primitive operations defined for event counts and sequencers. In

addition, primitive operations have been defined and included for

. .

x | :ﬁ{i.ﬁﬁ}‘:,? ML -‘r{ Fe

N A A] “A hE N ". , . ',._',.‘ . ‘1' o el K N.rq.".‘f\y‘l-r.‘v "-.\- AT .'-.. -

- 2t 6,0 008 54" o8 Vol Vel Vot tad Bad Pab vl eny Suh bef Vot Y

accessing shared memory segments.
are also listed in this section.

1. The Kernel

-‘..u.‘a".: TR TR “gea gt |'.I

The procedures in this library

Figure 4.3 shows a logical diagram of the software kernel. As

shown, the kernel consists of three major parts: the input/output

buffers, the communications manager, and the shared memory

manager.

Input/Output
Buffers

Manager

Shared Memory

Physical
Communication
Links

Application
Program
Modules

Figure 4.3. Shared Mem

50

Kernel Logical Block Diagram

TR R Bt Sa Bt IR IRV I e T e T B e P o e T T e e T e T Y e e A e e T e T e T e
ARG L AW LS A RV T T T N e eV n g T T P i 0 i, L A e ey

»
P

-

B St N PO P ring

5% %

-

}‘r‘x]

= ‘,-‘rv - -

I’Jl”

.".. '.’f.'r':]' >

'y
e
Teg s,

¢

« v
oy

v

[}
.

Ll

.

h)

5§ 4
Py,

vas

[4

% e e R
A Y

Y

l‘h,

» v
o o

" .‘_-J- 5‘!”1”?‘“ 2y

5 -
by “y ¥

Sl e -

o

93

a\x,

LY

b
>

)

)

RPA AU N BB PSR NS SO B 1 Bh- R N S0 b Ga® a7 ML e BT 0 g aty ATR 19 aT0 0 8 0 0 0 D@04 Vel Y 0 Nt . T RTRITT

a Input/Output Buffers
A set of input and and a set of output buffers are provided
for the hardware communications links. These buffers decouple the
relatively slow link data transfers from the operation of the kernel.
The buffers enable the kernel to operate in parallel with network data
transfers.
b. Communications Manager
All communications between a kernel and the library
interface procedures and between kernels on different nodes are for-
matted as packets. Two different packet formats are used. One
format is used for communication between a kernel and a library
interface procedure and one is used for communication between
kernels on different nodes in the network. The communications
manager perform any necessary conversions between the two packet
formats. Figure 4.4 depicts an example of each type of communi-

cations packet. A listing of all the packet types is included in

Appendix C.
Packet Format Used Between an Interface Module and the Kernel
b) e__
action | event data :iata
code |count id size Y

Packet Format Used Between Kernels on Different Nodes

>)
action | from | from to to event data (‘j ati
code |node id|process|node id|process|count id size Yy

X ¢

Figure 4.4. Kernel Communication Packet Formats

51

{
o - - - - - - .t - - ~ - - -~ - - - - - » -
YRAR LR e A Y e A T S S R A A A A S e R S A S TR A R

NN

Ot I S I

»

A A

pot’ <

‘e
~
.
R
K

A

o f}'" -)..A R

The communications manager processes all received 2

packets. If a packet destination is a remote node, the packet is routed i‘
to the node via the hardware communications link identified by the ';
node.link data structure. If the packet is for a local application pro- ;E
gram module interface procedure, the packet is routed to that inter- 2
face procedure via the appropriate local link. Otherwise, the packet is
processed by the node's shared memory manager. 32.
c. Shared Memory Manager E’—’

The shared memory manager actually performs the .

operations defined by the various library interface procedures. As a -}E.
result of external requests, this module accesses the kernei data 3}
structures and, if a response is required, generates appropriate mes-
sage packets for return to the requesting process. :*
2. Data Structures :
Operation of the kernel is best described by examining the :

set of data structures that support the kernel. These data structures ;_J
are central to operation of the kernel. Dia}grams of these data struc- .: |
tures and their interrelation are shown in Figures 4.5, 4.6, and 4.7. i-:
a node.link ._E

This array is used to represent the physical configuration .,
of a network. Each node in the network is assigned a unique identi- :j_
fying number. By convention, the assigned numbers start at zero and E':’:
are consecutive. The node.link data structure is a one-dimensional i’ :
array with one element for every node in the network. The value of Ev
the ith element in the array identifies the number of the hardware :
52 &

‘y

08

-

R, .

link that is used to send messages to the network node with identify-

ing number i. This does not necessarily mean that the ith node is at
the other end of the specified link. Rather, it means that the node on
the other end of the sp:cified link is the next node in the path to the
ith node.

Note that the node.link array may be viewed as one row
extracted from a type of adjacency matrix that defines the network.
Such an adjacency matrix array is, in fact, used at compile time to
define the individual node.link arrays. As a result, each kernel hold a
portion of the overall matrix. Currently, the programmer defines the
contents of this matrix as the last step of the software development
process.

b. count.node

As was done to uniquely identify nodes, each event count
and sequencer in the system is assigned a unique identifying number.
Again, by convention, these numbers start at zero and are consecutive.
The count.node structure is a one-dimensional array with one element
for each event count and sequencer in the system. The value of the ith
element in the array identifies the number of the node that maintains
the count assigned identifying number i. This array identifies which
processor in the network is responsible for maintaining each event
count.

¢. count.array
This is a two-dimensional array that contains four ele-

ments for each event count and sequencer maintained by a kernel at a

53

S Y% '\..(‘\J'.‘-"'-,y'_\ w’:.

* o - P Paas *~
] @ T

v

~%i@ "
v]®

SN
AP

I

-,

J'-fv"d’

LY

-I'\-" o

4V 8% 0'R P T R R T IR Iy gt R e g

node. The first two of these elements are the current values of the
event count and sequencer. The third element is either a nil pointer
or a pointer to the base of a shared memory segment associated with
the event count and sequencer. The fourth element is either a nil
pointer or a pointer to a list of processes which have been suspended
by executing the await library procedure. This list is ordered by value
of the count value specified when a processes executed the await pro-
cedure. Each event count and sequencer has a separate waiting pro-
cess list associated with it.
d. count.array.indices

This is a one-dimensional array that has one element for
each event count in the system. For counts maintained at a particular
node, this array contains the index of that count’s data in the
count.array data structure. For counts not maintained at the node, the
array contains the nil token. Use of this array speeds access to a
count's data in the count.array data structure by providing a direct
pointer to the desired row and avoiding having to search through the
count.array to find the correct row.

e. node.awaits

As was mentioned earlier, associated with each event
count and sequencer is a list of suspended processes waiting for par-
ticular count values to be reached. These lists of suspended processes
are stored using the node.awaits data structure. The data structure is
a two-dimensional array where each row of the array represents an

entry for one suspended process. There are four data elements for

54

' "W, -I'-\I_ I‘.J'\{'-.- _-. \ ."._..‘. - J‘ (\._. \J‘\.{\(._Jk_f .r_'.\ ,* \ \ \.(N.r\ A

.....

O Ly

AW WV V'

el

PR TAL®
- e 6o

A A%
A

EL L2

* RPN,
A

v
n

53 @

K:l- R
2

v

._ ,':';

A R ot
.{‘gt?/l'f_"

D

AN
e
St

,_.',
""'/ e

-

.

e

., .".-/-]

=
v %
-

d.:}';{‘{;’r'.{-

. A
)

J
»

(PO PO IO PO Y

a
.0%.

™
W Wty

P it Uyt AaV B4V 4 g et eV

e 0%e $50 0 R 0% 0% 0% 0N e

each entry. The first element of the entry is the count value for which

the suspended process is waiting. The next two elements identify

which process at which node has been suspended. The final element

is either a nil pointer or a pointer to the next entry in that particular

waiting process list. These pointers and the waiting process pointers

in the count.array data structure are row index values of the

node.awaits data structure. Figure 4.5 shows an example waiting pro-

cess list.

‘..I » ‘J(-l"' - ‘)F‘ v
» Wo V¥ 8% W%, O

count.array

Event Count | Sequencer Memory Await List
Value Value Pointer Pointer
42 44 nil _l
650 0 L nil
12345 12348 L4
447 0 nil nil
node.awaits
Wait-for Waiting Waiting Next Await
Count Node Id Process |d Pointer
12347 10 5 nil
12346 7 6
43 1 8 nil

Figure 4.5. Kernel Waiting Process List Structure

A Wy

O TR T AR

55

e
B

“w

TP T TR R T SO S D)
L VT e Aty Ay

{'.l Ao

"frrq

t’\l

L AR

£

e

- x

>

.-‘.‘
A

] ® -

.

22540

03

P4

>

I

‘l

t’lr ‘At
&

“_r_»
_-5%$‘.z,_r,.-l.

<

® Fr

2
/' d

L

[P LI PRI '.,' . ‘.."-"l'
LA A \j' LTS

I..{'\(..("f',{':‘ T,
LA

&

<
27
L

e |
-t -

p

2P e

s

P

e

;.

LA 4

-
-
T

,'s ‘.‘

;t vai'® T R I R R R I A R I OO R T S VRO VN RO OO TR LSa Sal talk to) S agd Sa) od Sk mulk Gl Vol B gk ol Gab Sul Goh Gof ¢
i

% f free.list

; This is a one-dimensional array that has one element for
: each array position in the node.awaits data structure. The free.list data
l structure holds a list of node.await data structure row indices that are
':: not in use and may be allocated to any event count and sequencer's
> waiting process list. As entries are removed from wait process lists,
E the associated node.awaits row indices are returned to this free list.

: A pointer into the free.list data structure identifies the
M value of the next available node.awaits row index. When this next
. index is allocated, the pointer is incremented to find yet the next
! available node.awaits row index. When an index is returned to the
H free.list data structure, the pointer is decremented and the returned
3 index is stored. Figure 4.6 illustrates the use of the free list and asso-
: ciated pointer.

& g count.size

i This is a one-dimensional array with one element for
‘ each event count and sequencer in the system. The value of the ith
: element in the array identifies the number of bytes of shared memory
& that are to be ascociated with count i.

j h. node.data

This array is the block of shared memory available at a

node. Segments of this memory block are apportioned based on the

(L

%) values in the count.size data structure for counts being maintained at

thet node. The memory pointers in the count.array data structure

b)
N

L 56

by i e]

\J
»
¢
" - . 1 L LS N C LN T ~ g~ AR % . ~ T S T L i N L R R 'lr.‘_.“."-\’\‘n"r' AL)
N Y R Y N R S B i R A

NASANS RS Al)

AN 1% 4 a8 et Rt Nt Pa" 0oV ie® Ga® Fa® iaY 0a ava s a"aln atd ¥y’ ™ TR 4°0,9 %aq Sad Vot b ot o9, ov) b oat eap Vatotay igl el Ta¥ Sad ‘et nac - VTV LIRUN VR

A
s':
,
o
node.awaits ;}
Wait-for Waiting Waiting Next Await ’
Count Nede Id Process Id Pointer o
I* :
12347 10 5 nil 3
[y
12346 7 B
A
43 1 8 nil W
Ny
-t 3
Wy
]
\ o
o 3
free.list]
] A
f
§
Next Free &
Pointer &

Figure 4.6. Kernel Waiting Free List Management ﬁ

point to the start of individual shared memory segments in this block ol
of memory. Figure 4.7 shows how this shared memory array is config-)
ured and accessed. ..
.

3. Library Procedures

A functional description of each of the library interface pro- S:

cedures is provided below. Each procedure includes a reference to a .:
“link” parameter. This parameter is a bidirectional communication ,E'
channel that links or connects a distributed application program ::
module to the kernel. The program module does not directly use the \

T A EFRTETLT

W T W NI WP ST SIS0 a0 W (SR TR TG0 TN YO T YO T TOT M R Wk M Vo R %3 3 Ve Alg 0 1o ab Al TN, TR Y abrab b bt Lthtitlag g o

channel for any communication. The library interface procedures use E
this channel internally for communicating with the kernel. The A

detailed source code for the procedures is provided in Appendix C. -9

-
count.array.indices s

nil nil nil * nil 2N .\l nil o __

count .array

Event Count | Sequencer Memory Await List
Value Value Pointer Pointer

42 44 nil ®

"

Tt

)

XY PN

h 8

node.data

[anad

r_w

. [[I 1 [[T T]

¥ IX

PR A

W,l(’),’{f- h 4

count .size

.

'{...' [

256 | o [26 | o | 6] 6] 2 Jsr2] o]

Figure 4.7. Kernel Shared Memory Access Data Structures N

58

.-<- .,.-
,:,-',-v AL AN, >

. X U L A o At TN T R P " A SR LR TR Y
WA, lvl‘n 3 '(" X , (-1",!‘\!"1"\" ’ ..r(0\.'a.'~. -'.'\' D ..v Q-.. ..n -' ! A e A "'! y

PP R0 BV i et et Bab g Dat 2% 0% 0a% 0t daY 0" Uat Pat 0atu Vst Sat 02" AT g t00", 1)®, P 84" BaY Bat et 2" Ba" .l 0 5a° 0a" et §ad_fe? BaV¥ .‘t‘ R W Sab a0 Ut Gt 0g” 8:° Vot L

N

'

a. read(link, count.id, count.value) 3&

This procedure performs the read operation on the o~

specified event count. The value of count.value is set to the current .:':!
value of the count. "::;
b. advance(link, count.id) o

This procedure increments the value of the specified o

event count. If other processes are waiting on the new value of the ’.‘:',
event count, these waiting processes are resumed. ;
c. awalit(link, count.id, count.value) ‘:‘,

The executing process is suspended until the value of the ::.:E;

specified count reaches the argument count.value. If the value of the ,'
specified count is already greater or equal to the argument count.value, 5 ~
the process executing the await call continues execution. :':5
d. ticket(link, count.id, ticket.value) § \

- This procedure sets the value of ticket.value to the value ;7
representing the next available reservation for the specified ;

sequencer.

o

e. put(link, count.id, index, byte.array)

g

This procedure provides write access to the shared i
S0
memory segment associated with the specified event count. The array N
of bytes passed to the procedure is stored in the shared memory seg- !v
ment offset from beginning of the shared memory segment by the %
~
number of bytes specified by the value of the index parameter. o
L 4
Y
ok
. [,
59 N

E7

\
|
o
N
.)
SR SOV A 0 S T TS e R S A i A 1 Byt A T i A o O N Ay RIS S A A i’

F f get(link, count.id, index, byte.array)

The get procedure complements the put procedure by
b

providing read access to the shared memory segment associated with

\ the specified count. The array of bytes passed to the procedure is e
' read from the shared memory segment offset from beginning of the ; :"
A shared memory segment by the number of bytes specified by the value '
: of the index parameter. The number of bytes read is based on the size \
of the byte.array parameter. 'T

: g ecs.kernel(link.array,count.node,count.size,node.id, i
node.link) M

The procedure for the kernel is itself included in the ':

library. This procedure is executed on each node in the system. The ..

&

link.array parameter for the kernel is an array of all the individual
. links that connect the application program modules at a node to the N
kernel. The other kernel parameters are described in detail in the . _A

) data structures section of this chapter. ».

4

D. PROGRAMMING

S e s

This section presents a brief overview of how to program using 2

v the shared memory interface. A detailed programming example is

25 S BN % W}

presented in Appendix D. Programming using the shared memory

interface is accomplished in three basic steps. H

l*

. The first programming step is to divide the program into modules -
that should operate in parallel and to define the shared memory seg- 24

ments and event counts and sequencers that will be required for N

9

communication between and synchronization of the modules. This "

! 60 3]
N

: o
\)
~

A - - - - - - - - - LI ~ LI - L Y . - I N S ST DX S B N S | MU IR - B
‘f‘ o AW ‘-(';\-Q‘__-""-F VI VML f AL A I T e T o - \s\ ._-f.,_ A WA AT \-f._-r.‘-'.

L T
PR PTG L AL P AL Py

step should performed without considering the physical configuration
of a network.

The next step is to code the individual modules using the library
interface procedures to manipulate the event counts and sequencers
and to access the shared memory segments. Since this step is also
accomplished without considering the physical configuration of the
network, the modules may be coded independently.

The final step of the software development process is to apportion
modules and shared memory segments amongst different processors
in a network. Although any apportionment of the modules and mem-
ory segments is logically equivalent, this placement process may be
influenced by practical considerations. For example, one would not
want to place all the computationally intensive modules on the same
processor. Further, it would seem reasonable to locate modules shar-
ing the same memory segment physically close to the network loca-
tion of the memory segment. To help quantify the factors that may
influence the network placement of modules and shared memory
segments, the following section evaluates the performance of the

shared memory interface under a variety of conditions.

E. EVALUATION

To evaluate the prototype programming interface, a set of tests
was conducted using the interface. The objective of this testing was to
provide a representative measure of the communications performance
of a network when using the programming interface. It was desired to

determine how the network communications performance was

61

e e e e ey e s
TR A ‘.-".r P A AT AT I AT M N NN AT I AT

I R e e LR .
A " AT S AT R AT S e

.
.

L)

C

[

-

-y i

P

iGel

A

~sl-

DA @ AR

P

v

Z
2I8F

‘s

AL £
NOWINAL
(""—,&l’s/'x LAR S —‘" 5 2

Bl RAS
3

*‘;-‘ o

Py

oy

+
=,

Je

o,

75

'v. 1
it

P

.I‘ -1 -ll"‘
2 5 4
,"_ Lo

A
v

"V

.
l{]'
. &

My " ﬁ =z
XA

f*)*'\'T

affected by variations in certain parameters. This testing utilized

T414 Transputers operating with a clock speed of 15 MHz and a link
speed of 20 Mbits per second. These tests are described in the
following paragraphs. It should be noted that the prototype program-
ming interface was not optimized for maximum performance. Because
of this, the interface performance documented here can likely be
improved. Chapter VI describes some ways in which the program-
ming interface performance can be improved.
1. Basic Interface Procedure Timing

As the first step in examining the performance of the pro-
gramming interface, it was chosen to measure the execution times of
the various interface procedures. A test program was developed to
execute each of these procedures in a loop. The time required to
execute the loop with each of the interface procedures was measured.
The time required to execute the loop without an interface procedure
(i.e., a “null loop”) was measured and subtracted from the interface
procedure loop times. The resulting time was used to determine the
average time required for a single interface procedure execution.

Interface procedure execution times were measured under
several sets of conditions. Specifically, the network distance between
an interface procedure and its target event count and sequencer was
varied and, for the put and get operations, the size of the argument
data element was varied. The results of this testing are shown in

Figures 4.8, 4.9, and 4.10.

62

. s - P, R I TP I AR VL R O I L I ”~
Y Y N AT A N N N N T g N N N A T TR O TR S s N A A

A

"~
Lot

P

-

=X XN RN

,

By %, W,
5 g3 1

-

=

AL
e Ve e g

e

III:‘#‘.‘-'

o

Eaotgl J
b

ST B rr e A® e vy ® 2

A

-

-

o

R AT LY I -) (N | .n"- b “da? BaV B2] O -'».-J" *0.0° 0.0 0.2 P20 0.4 -, - - N b . 1 LAV ’ ‘ . ’J\.‘f,r_‘-‘ 4‘ ‘,‘.'

< ng
‘d' of A

&

o

A

S

2

read/ticket <\
advance A
await(ready))
await/advance) '::"

te ¢t

Execution Time
(milliSeconds)

] . . . '
0o 1 2 3 4 s 6 7 8 S

Hop Distance i,

J@

Figure 4.8. Primitiv i in R

T ') .‘I
5l

L 4
-

Loy
e
e,

e

. Y
P

I
'l'l':(

.
.o
W

x
» R
- .

w
W

64 Bytes
256 Bytes
512 Bytes
1024 Bytes

v
LR

td ¢

Execution Time
(milliSeconds)
hd

-~
AP

;‘:’:
i Y

*

"y

o tw W
Bt}
x
»

N -

N A B4
! .\v ‘a

Y 5N

S
& g
A

o
N gt

®
NY
IR

Hop Distance

e
b
» .

Figure 4.9. Put Operation Timing Test Results N

D~

E § <3 64 Bytes
c 8 -~ 256 Bytes
X} (% & 512 Bytes
§ = -~ 1024 Bytes
x £

X £

Hop Distance

Figure 4.10. Get Operation Timing Test Results

Figure 4.8 shows two basic types of execution behavior. First,
the execution times for one group of interface procedures is relatively
constant over the range of conditions tested. This group of proce-
dures includes those that do not require any response from the dis-
tributed kernel. The procedure can pass its communications packet
to the kernel and the application program module can proceed with-
out waiting for a reply. Since communication between the interface
procedure and the kernel is via memory-to-memory transfer, the
transmission of a communications packet is fast and relatively insensi-
tive to variations in data element size over the range of kernel opera-
tion. Note also in Figure 4.9 that the execution time for the put
operation is significantly less for the zero-hop (same node) case than

for the one-hop case. This is because the zero-hop case is executed by

64

- TR N T T T U A LT S S T
L AL AT . - PN SRR
- A .L...fa..:...‘_x..;Ll._x'lhf\f\?. SN L.f\

A NARN A 6 S M0 A IR A R S A e 50 A W £ 8 2 Sl A L A L T 0 A e 78007000 Sl g™ G, LN TR AN bl

]
5
®
%,
Q. (]
performing a memory-to-memory transfer of data as opposed to the _‘.’
slower physical link transfer of data in the one-hop case. '5‘
The second type of behavior is for interface procedures that .E":"
do require a response from the distributed kernel. As can be seen in ;.'is
i
!

Figure 4.8 for the read, ticket, and await procedures and in Figure
4.10 for the get procedure, execution times are strongly dependent on

the test conditions. As the network distance is varied, the overall

-

execution time increases because the “round trip” communication

time in the network increases. Further, since data transfer between

"

nodes via the hardware links is significantly slower than the memory

el

to memory transfer, the effects of data size on execution time for the

get procedure become significant.

The results of this testing imply that there is a preferred

R @ 1 S0, 1@ VT

location for the counts and shared memory segment for a producer

and consumer of data located at different nodes in the network. Since '
the put operation is relatively insensitive to network distance and i
since the get operation is greatly affected by inietwork distance, it 1
would appear that the shared memory segment for a producer :::\;
consumer pair should be located at the consumer's node. A test was ?.:

i

performed to confirm this. In this test, the count and shared memory

"y

segment for a producer and consumer pair were placed at the :E,
’
producer’'s node, then at the consumer’'s node. The resulting data o
by
communication rates were measured for various data element sizes. -:‘
The results of this testing are shown in Figure 4.11 for a network)
¥
distance of seven nodes. The results of this test show that the highest a:
Ny
»
o
65 N
v
A
NI
LA
r_:-"
"oy

h)

4y

»
At -‘."‘"...‘A-q'...‘\. et -‘-4.-'.-'-"{ W W e W t
" n\mﬁhk,.h‘n.‘_‘;[._g;.m{.hh*‘i‘ﬂ.‘)ﬂm&-’\ RN

o g e N T e

e el ¥, .. TR 4.-‘ .- "% A8.8" » _y_‘;-' .-- el e -.c'u' N ol A v .-._‘_ ey _'.
o
.:_’
W
’
),%
&
g
communications rate is obtained when the shared memory segment A
and associated event count for a producer/consumer pair is located at :
™
the consumer’s node. N
-
o~
n.\'
60 ' :_::
1 a '
o 50 - o
-— N~
2 .
g e / 0
5 40 A ~
© 8 "
S g i ,
2]
5§38 4 / /
= o 30 v e
S ¢ %
€2 // =
22 / Shared Memory _.
£ < Segment Location: =
8 3~ at Consumer ;‘
-~ at Producer
v v v v T T T v :
0 200 400 600 800 1000 1200 s
Data Element Size (bytes) '
Figure 4.11. Count and Shared Memory Location Effects o
on Communication Rate o
¢
2. Node Distance Effects on Communication Rate N
o
The distance between an application program module pro- ;I
'~
ducing data and the application program module consuming that data >
can be measured as the number of physical links or “hops” in the 2
communications path betwecn the node locations of the modules. A :‘,::
N
cest was performed to determine the effect that hop distance could »
have on the overall data communication rate between applicaticn pro- ';'.:
gram modules. In this test, a producer and consumer of data were o
.
L
X,
66 0
g
o
w0
!I
e
pA
N

ALY AR ’-\’\’- e e T T A L L L R S A A AR, KA

7

separated by increasing hop distances. The library interface proce-
dures were used to transfer data between the producer and consumer
at the maximum possible rate. In addition, since the size of a commu-
nication message has a demonstrated effect on performance (Chapter
I1I), the size of the data element being communicated using the pro-
gramming interface was varied. The resulting communications data

rates are shown in Figure 4.12.

400\

© 350)
©
T 5 300
g g -
2]
a § 250 \ -
b4 1 Byte
o
2 8 200 i\ A -~ 64 Bytes
8 2 T \ = 512 Bytes
g 5 150 == 1024 Bytes
E g J \

100
Q o
(&) E '\‘h_‘ {

50
1 ‘j&*
0 P ————
0 1 2 3 4 5 6 7
Hop Distance

Figure 4.12. Hop Distance Effects on Communication Data Rat

This graph shows that as the hop distance increases, the
maximum data rate decreases. This decrease is rapid for first few
hops but less significant as the hop distance is further increased. This

is because each additional hop represents a proportionally smaller

increment of in-line delay to the data transfer. As was shown in

AL LAYty FT”.WWWNW“TM?: o

N
>

XX

n

F. ;‘"I ’-l)‘l{’r{‘t‘f‘;-}.!‘;. ’
I . R AR
o P

Ny
" 1

at
" -,

: o5t
el

<
.
1

e B

AR 5%
'@ LR
e S AN

v

sor
L4

L)

)
P
»
S
wale'y
. FIE_Y

v

| Ce
«@® .,
(X Tt

"‘

N "y}
S % Yh

A.n'\l.‘.
PN XA RS
.

.
. x

e,

gog

2L PP

% %

«

Chapter III for the Transputer in general, communication of larger "'

data elements is more efficient when using the programming

interface. y
Processes executing on the nodes between the producer and ;

consumer may also be affected by the data transfer through a node. To

examine this, a looping calculation was initiated on a node immedi-

ately between a producer and consumer pair. The number of loops

executed per unit time during a data transfer was measured and com-

pared to the no-data transfer looping rate. Again, varying sizes of data

elements were used. The results of this testing are shown in Figure E
418 :
Figure 4.13 shows that lowest performance of about 70 per- ‘.
cent of normal occurs when using the smallest-sized data elements. :
As the size of the data element increases, the performance increases E
to a maximum of about 80 percent of normal. Performance of the F
intermediate process improves when the data element size is ';
increased because the overhead associated with communicating a sin- ’
gle message becomes relatively smaller. This is the same general)
effect as was shown in Chapter III for communication with varying -
sized data packets.
3. Hardware Link Sharing Effects on Communication Rate -
When using the programming interface, it is likely that data .E
communication between several pairs of producers and consumers will ¢
be conducted using the same hardware communications link. In this 3
case, the kernel in the node on either end of the link is also involved o
4
68 S

v

e et -’ '.’{-‘-“;J“;v’_‘f__-’\l‘\f ,

WS WA IRN AN AT s A

& e 5,0,

4 ".("l-f_-(' e \.-‘\" o AT A NN L \-‘\«'._'..'\ A e T T AT e A T e T T e T A O N
h T N B R W R » Q > n g v Y w

- E e I T IR T 2 Vatu® o

Fh ol)%

“ga® ¥

u

5 atA" 0% 1a 80 H o Ua R R AV P8 08 E b 0 Uat Yal Bt e v p VRN af tay Say 6oy iad tad tah b gy o 3

in the communication. A test was performed to determine what
effects this link sharing had on the overall data communications rate
between the nodes. In this test, producers and consumers were
placed on adjacent nodes. Producers were placed on each node in the
same number to provide balanced bidirectional utilization of the hard-
ware link. The number of producers on each node and the size of a
communication data element was varied. The results of this test are
shown in Figure 4.14. This plot shows that, although some degrada-
tion in communications performance does occur due to kernel over-
head, a substantial data rate can be maintained when a hardware link

is shared between several users.

1.0

0.9
0.8 p—r)
0.7 gpeit—r=
0.6

05

04

0.3

Normalized Loop Performance

0.2

0.1

0.0 . . v . . S—
0 200 400 800 800 1000 1200

Data Element Size (bytes)

Figure 4.13. Intermediate Process Degradation
During Communication

69

* %.‘
R

PRl

AL

o

b

P
e

S0
)

1 Ay
T

1
.

I

1'?'{}-‘ .

-
f

. ;,
[4

-.w{lr("
s /1

A T

,n
]
.

el 4

Ry

- w

1®

LA

Sy
«
P4

7y

A4
e
L 2

Ve
4

e

Ly

o 's 5 s
a0’ a
el

R R O R O R R T R L O v

-

1024 Bytes
512 Bytes
256 Bytes
64 Bytes

AEI

P,

7
(Kbytes per second)

Total Communication Data Rate

P

o)

PO

Number of Producers

Figure 4.14. Shared Hardware Link Communications Rates

Lt-?a.f%ﬁ Yy

4. Muitiple Link Effects on Communication Rate

In most cases, several links on each Transputer in a network

F

will be connected and utilized at any one time. To test the

-
)
‘.,
AL
Cd

communications performance of the kernel under these conditions, a
varying number of hardware links on one Transputer were
bidirectionally loaded. The resulting data rates were measured for
different data element sizes. The results of the test are shown in

Figure 4.15.

\'J‘ J

NN NN PV AN L PR AR AN AN R AN A R N oI T S AP Y2 O T O AP AR L P T AR A B T IR I
VO I R TS o Ts R ey O o Tyt ot ot SR P T Nt S T o o S v o T S v

1g¥atg¥ala® "2 ha? Ba¥ 0a%. 6a¥ Baw 0ot dat gov gV > Su¥ gat. 9 Qo E1%20a% a¥ 0a¥. fab far ga¢ B gt faf gl gad- at Sat Gt et % e ? fad el ‘S %" fal fat | TRTR

LRSS g aUN oV oWl oFR o) CLATL NN P Rh oF) JVh o0 oUh oV o oW PR VA oo o B gt o oW ¥ Bh oV Rl VR N

h X

n
®
heG
'¢.:~
e

200 ALY s
J by

180 ': :
L -

160 { \\ :

140 \ Y
1 »

120] \ 64 rate R.

256 rate

10 1 \ \ 512 rate ;

80 1024 rate
< \ \\ f\" g,

60 Ky
0 Q‘\\\ ¥
4 \u\‘" k.&
20 \‘ﬂ \
o———F————q 3

te ¢

Communication Data Rate
(Kbytes per second per link)

0 1 2 3 4 5
Number of Links Active E_. A
o
Figure 4.15. Multiple Hardware Link Communications Rates :
Figure 4.15 shows that, as the number of links used ot
. increases, the data actually communicated via each link decreases. ;
g
However, in Chapter III it was shown that link communication rate by
"
was essentially independent of the number of links active. The kernel oy
must, therefore, the cause of this reduced link utilization. Since all g
».-.‘_
data messages must be processed by the kernel and since the kernel -'_:E
LYl
can only process and transfer a fixed maximum number of messages in ‘Y“«
any time period, a limit on the data rate through the kernel must :‘— '
>
’
exist. Since Figure 4.15 shows the communication rate per link ’
'v\
decreasing by more than a factor of two when a second link is acti- ;
vated, it appears that the kernel data rate limit is less than the capac- :.;_'
e
ity of a single communication link. Activating additional links, o
7N
h)
s
®
&
71 ;%
’
o

b 1

B4

T Ay P NN -'."":*," y._ﬁ.".'_'\'.-,'.\;\-.;.\<.._;-.",. o

T x=-

€ 14 (a8 3.8 gov S 0 Bet it g~ 0 gva g8 ath ath oV gVl sV aHLAChLE 4.0 008 Vot 0af dal Vab Eat Vot Bad Wak SLPfa), S U ISR NN VOV UV TSV IS U VY GO WY

therefore, except to reduce the hop distance between nodes in a
network, does not increase the overall communication bandwidth of
the network. Chapter VI discusses potential changes to the kernel

which may improve the programming interface performance.

72

o ot o e, o N T o e e s e e T e e e e e e e T e e e e e e e e e
VR ST N N VL G (R N o S, S A IR NN e e

.1
L) o) -

T P At

B _m_=~
Vi o o o

v

hCh ol St
5 3

- g

e e
T

> v
o~

—y

bl

e e s 2

XA

“x

e -
[X

AT g R A

VYUY O I AL SRR G it vat UL VAl G A e L 0 AuD SRV, A RNR A St 07 £ 00 06 NI AHEANC AR S M AV g A AT KA Bt Bad Lliaho falte Tk okt § 8 fot B "l"‘.;’-‘

2

®
R
7
.:‘- .
V. MESSAGE-PASSING MODEL PROGRAMMING INTERFACE .',
S,
A. BACKGROUND :s:,:.
The shared memory model is one method for isolating the dis- :
tributed systems software designer and programmer from having to
consider the physical configuration of a network of Transputers. It is : :
also possible, however, to utilize a message passing model to provide ;:9‘
for this isolation. To investigate this alternative, a prototype pro- ‘;=
gramming interface based on message passing has been developed. :‘.‘:‘.'.i;:i
This chapter describes and evaluates this prototype. NG
': :
B. IMPLEMENTATION "'s-
Since the Transputer is based on the concept of Communicating %}_ :
Sequential Processes (CSP), using this concept as a basis for a mes- . '
sage-passing prototype was a natural choice. Communications in the 5:'.2}
message-passing prototype are, therefore, based on CSP communica- :
tions “rules.” Specifically, message passing is logically point-to-point, ,ro ,
synchronousm and unbuffered. E,‘::.. ‘
A significant goal in the development of this interface was to per- EE
mit application program modules to be written in the Transputer's _:
“native” high-level language, OCCAM, without requiring any additional \:
external procedure references. In this way, existing modules pro- :‘\'
grammed in OCCAM could be used with the interface. ‘Q:‘
As with the shared-memory model prototype. the core of the ::Ef
message-passing prototype is a distributed kernel that executes on E:“E

73 ;"*

)

WU S I WU WU MO U WU WG R WU WU MU SRS R TS R W 1"atp ety % o00" A% Uat et olia¥ JNat GA¥ gat et b W W W fatala® fa¢ g’ Sa® tav 0a% fa¥

e e

e e e

T

e ..l

-7
‘-’

',-,-ax

DL L

%

Tt

- %

- P
£ Al k2 e -

=y

- L W

each node in the network. Figure 5.1 shows the physical configuration)
of such a network. Note that this physical configuration is very similar
to the physical configuration used in the shared-memory model -

prototype.

Transputer 1 Transputer 3

Hardware
Links
Local
Channels]
1
hd |
—p ¢
Application "
Distributed | Program X
Kernel Transputer 2 Modules N
Figure 5.1. Physical Configuration of Message-Passing Kernel .

Figure 5.2 depicts the logical configuration of the message-passing

network as seen by the application. The logical configuration of the

74

O P R T A e T o A PSSP AR

.

;L

Dt b ga¥ fat”

Ca"

ok

Ry

”

message-passing network shows individual application program mod-

ules interconnected by a network of global message-passing channels.

Global
Channels
via
Distributed

Kernel

Application
Program
Modules

Figure 5.2. Logical Confi ion of Message-Passing Kernel

This chapter frequently uses the terms “local channel” and
“global channel” when referring to the operation of the message-
passing prototype. A local channel is an actual communications path
that exists between a process and a kernel. Figure 5.1 shows several
examples of local channels. Global channels, as shown in Figure 5.2,
are the virtual communication paths that exist between two processes.

These virtual communications paths are established and maintained by

75

L el T ST W A '_;_;._‘.;J'_ o= ‘J‘_'J’,' S '-"\. \.1'. T T W W W Vﬂ-"- .\\1\\. .i.\\-! .‘ WY 'wf‘.:-" VP

A TR Y Y LA AR I

~

»

Y

" xy
- e

«

2

IR B

) rorce
.x.'{"a ':'J. ':'; I.f'{,
N) i B < %

2

ok

i -‘

[4

XXXLL |

@ 77

o
NS

o
Y PG

AL

AT
>

opn g ;
"

4
the distributed kermel. Local channels may be thought of as connect- ':
ing processes to the ends of global channels. :'
1. The Kernel S-'
Figure 5.3 shows a block diagram of the message-passing -:
kernel. As shown, the kernel consists of three major parts: the Ry
Input/Output Buffers, Channel Controllers, and the Communications .,
Manager. In addition, the kernel performs some initialization of the Kﬁ
network. Each node broadcasts to the network a list of the global ?
channel ends that it has been assigned. This information is used by £
the kernel to create a global routing table for network _F
communications. p A
a. Input/Output Buffers

These buffers are identical to those used in the shared '-

memory model prototype. They decouple the relatively slow link data .:::
transfers from the operation of the kernel. The buffers enable the ker- ! :
nel to operate in parallel with network data transfers. ',,'. '
b. Channel Controllers y

The kernel creates one channel controller process for ""

each local channel at a node. The channel controller is the physical \2
connection between a local channel and the kernel and is the logical 3

- j
"4

connection between a local channel and the appropriate global chan-

nel. Communication over the global channel is controlled using a sim-

-
R S N TR)
PP R O

ple protocol which is managed by these channel controllers. When

the receiving end of a global channel is ready to receive an application

program module message, the receiving end channel controller

X7 OO N RO OO OO RN IO, OO N OO T T Sl b A S T T N e TS

transmits a “ready to receive” message to the sending end controller.
The sending end controller is then released to accept the applica-
tion’s message and send it to the receiving application program mod-

ule via the global channel.

Physical
Communication
Links

Input/Output
B

Application
Program
Modules

Communications
Manager

Local
Channels

N

Channvel
Controllers

Figure 5.3. Message Passing Kernel Logical Block Diagram

77

SO T T NI 3 N 0 B G e e, A A A N o P TR TRV O A ot Y e R L A A LA s ey,

o

,-

T YTy
R
A 2o

29

AR

-

’1"1_‘. 54 Y '5 .y,

..

P A e

"

x

W W W N o
e

Y

X

g S
1:‘1“ Pa i‘"ﬂ .
- -

Yk

‘ﬁ?"n

A

e o

rPp T - T,
‘l":‘"“sﬁ
"';'1""'""

Z

WaL

5 x;‘
s

a_t_ €
AR]
"(i'l'

Ll
b
!ﬁ‘

PP EELILY
2, oy B
;.% y ‘}

ensle L.

."1‘

- AR
d:.o’c’-

W RE W ey N e w e

e e ¥ %

o TR IR AN SR TR I NN W i W FU NP U IR R RO RTIOVR RV oA "7 u" BUa- 400" Slan iy Srin dans

PARE AS LA I R KA

c. Communications Manager
As in the shared memory interface, messages communi-
cated over the network are formatted as packets. Figure 5.4 diagrams
the packet format used. Each packet received from a hardware link or
from a channel controller is processed by the communications con-

troller and routed to its packet header identified destination.

Packet Form Between Kernels on Different N

)] e__
action to global data N data
code node id channel id size

() :2

Figure 5.4. Kernel Communications Packet Format

At the current state of the kernel's development, mes-
sages transmitted from an application program module over a global
channel are restricted to only one of the simple protocols predefined
in the OCCAM language [PoMa87]. The available protocol provides for
transmission of variable-length byte arrays (INT::[]JBYTE). This is not a
particularly limiting restriction since any structure in OCCAM can eas-
ily be RETYPED into an array of bytes for communications purposes.

2. Data Structures
The message-passing prototype kernel maintains a set of data
structures that defines the characteristics of the physical and logical
communications network. The overall operation of the kernel is fun-

damentally dependant on the interrelation of these structures. The

N e .
N AT AL ‘.',:-"_';f, RGP RGN N

.
L
“w

-..\-.. et :- : -_..; E-_,. AT RN AL ;.\‘.“‘: St

AR LR R IR

f‘-

T

NI R AL AT LA LA T

N

A,y

oK

&S

Al

Py

e

LAL LA
WP S, .

L « ¥ 7 21
LI

'K
o
N

- ;'w,\ SR YL
alnlwt St

M oia® 1,V tat N0 et (0t g 0 W TR W U R T N) M= RN A " L L BT EREAL S G LA LG AR te hatd AT AT NN A

"y
&

.
&

I:

kernel data structures are described in the following paragraphs. :i
s

Figure 5.5 is an example of the manner in which these data structures :
D

are interrelated at two different nodes. ;:-»z_",.
rod

a node.link i

ot

This data structure is identical to the node.link data
structure used in the shared-memory model. The value of the ith

element in the array identifies the number of the hardware link that
connects to the next node in the path leading to node i. The array
defines the node’s view of a network. Currently, the programmer
defines the contents of this data structure at the end of the software
development process based on the particular network configuration
that is to be used.
b. gchan.node

This structure is used to identify the end locations of

network global channels. This is a two-dimensional array which has a

two-element entry for each global channel defined in the distributed

o,

system. Each global channel in the network is assigned a unique 3
o
*w
identifying number. By convention, the assigned numbers start at zero %‘5
o
and are consecutive. This array is indexed by a global channel’s unique :_C::
'-HA
identifying number. The first element of an entry identifies the node o
NS
location of the process that outputs to the global channel. The second f:;:;,
element identifies the node location of the process that inputs from _’.Eljl
the channel. During kernel initialization. each node broadcasts a list- .
F
~
ing of global channel ends at the node. The kernel uses these E-‘"
.‘!-‘
o
. 4
R
‘*'\(
R
AN a

']
S'v'y'v‘l’
P A B N

k.

f RN

P

Yy~ S AP IS B I N AL A N T B e e R T R R P R R N N A 0L AN A A T G DU P AT R AN N T o i o
4 GRG0 DO S O Ty Dby 8 oY, E .0 O, Iyt I By £ (0 F o st T S Ty R N Rt S v, S o e Sy S s

DESION IMLENEITRTIOI M EVRLURT!ON AN _ABSTRAC
PROGRANMING AND) NAVAL POSTM»URTE SCHOOL
MONTEREY CR G R BRYANT JUN 88

e - e o o > - o T AL e ey N e o ndoud XA A4 ats L8 i Py 1 e oy o 4, . A

L}
3
*]
-
-
4
-
L]
K,
3
4
b
-
L
hd
x
e
&
-
-
3 0 o~ o b~
bx : : d o0 O x
$ Sl =l e z -
. =E = == M — o 7
- - 7 ————] N %
8_ o~ -3
A 3 0O
_ N EEE =g
- = = = = 4 z Z
- E m . m I
& 4 —
L i MW — i 3=
— <o =
— w5
Py M m
S
' In 5 DYr B
— 2 o =
. QL Z
e e——— ——— g =
e ——— — Sz
———— —— Q
] —_— 1 =

M AN LT T ARSI FaTal ntd | :

A VP O et e

h

>N Y e o W 3 D e o d B w3 : g al o0 0 Y

o

Seament of a Loaical Canfiguration ’

node n node m
global channel ¢

7 X .

local channel 1 out local channel 1 in 2

D r res for ical nfiquration 7
At node n Atn m W

g g
outputf 3 'n 1 c | c|b aln]c]| c]| b [output A
inputl b I m | c bl a blmlclbl alinput B
gchan.node

g 9
output| nij | touw| nit | nit [nil nil | nit | nit | nit | nit Joutput
input_nit_| nil_| nil | nil [nil il | Lin | nil | nil | nil | input
gchan.lchan -

X

-
»

= SR

lout bin

[nit | 9]nil] { 9 | nit | nil]

Ichan.gchan

o)

PP

S5

¥

lout lin

9 g
out in

chan.map

5

B A
g

=
R,

el
A

"
S

Figure 5.5. Kernel Data Structure Interrelation

LR

oL

80

AV 3% S0 L. 00 I) e W e W e P e W T W W gy Pt P NP i N T Mt - - " . ™ R T T AT AT T AT A " "R " NN " ...'
SAOAS RS NANENI AR SR AN B L (o) '~ .l’lll. » A% 00 0% 0% 0!. o '(' * -f V-F 3‘ , ‘d L ‘P ‘F\" 'r‘-*\ 5! ' J »

R N T U N UM LN VR UN LML UL RVl Sabatat Vatowah ealL cag Ol il LSk Sl oA s WO A XN MY o TH T A T T W TN Y UL WL WL KL W

X
s

- ’
"y
broadcast messages to construct this array. As a result, each node in j‘.)
the system has an identical copy of this data structure.
c. gchan.Ichan :5
If a global channel end is connected to a local channel at i:é

a particular node, this structure identifies which local channel the ‘!._'
connection is to. This is also a two-dimensional array indexed by a ::
global channel's unique identifying number. Each entry in the array E\‘ ‘
consists of two elements. In general, the first element of an entry is N
the identifier of the local channel that outputs to the global channel; }
the second element is the identifier of the local channel that inputs E’
from the global channel. At a particular node, this array only includes
local channel identifiers for the global channels that output from or ._
input to that node. All other entries in the array are nil at that node. ‘::

d. loc.chan
This data structure is an array of OCCAM communication EE
channels. This array, potentially different at each node in the net- ;".H'
work, defines all the local channels that connect to global channels at '('
a particular node. E
e. Ichan.gchan 4

This is a one-dimensional array with an element for each E

local channel at a node. The value of the ith element in the array is the *E\;,
identifier for the global channel to which local channel i is connected. E,
£ chan.map ;“
Each node in a network has a different version of this E:
data structure. The data structure is an array that holds two elements ‘t\,
>

&

81

*
A
r

-
Ly

e

i P

g ol

Al -
s - ol

-
- »

-

v ol

LU P TN P P Y Ty TR TR T T R P T PO PO T R T R TS 1o

e =

I O o g N ey ey P N L S
X 9AN.4'Y, tadlall 24 "

for each local channel defined at a node. For the ith channel defined
in the loc.chan array, the ith entry in the chan.map array defines the
end of the global channel “connecting to” that local channel. The first
element of an entry is the unique identifier for the global channel.
The second element of an entry identifies whether the local channel is
connected to the sending or receiving end of the global channel.
2. Library Procedures

The Library for the message passing interface consists only of

the distributed kernel procedure:

csp.kermmel(node.id, node.link, chan.map, loc.chan).

This kernel procedure is executed on each node in the sys-
tem. In general, the parameters for this procedure identify the physi-

cal and logical channel mappings for that node.

C PROGRAMMING

This section presents a brief overview of how to develop a pro-
gram using the message-passing interface. A detailed programming
example is presented in Appendix F. Programming using the mes-
sage-passing interface is accomplished in essentially the same three
basic steps as is programming using the shared memory interface.
The first step is to divide the program into modules that should oper-
ate in parallel and to define the point-to-point channels that will be
required for communication between the modules. This modulariza-

tion need not, however, consider the physical four-link limitation of an

82

o, sl N A A R Y N P R A A VL P PP R AT

s

3

A AR 4

CAA X ¥ 8

“.".0.-0. 209,85, ¢.

R R BN AT e O O, RS R R A P T Y
0 O U D J‘ A ‘)‘ LA L o

individual Transputer or the actual connectivity of a particular

network.

The next step is to code the individual modules using OCCAM
programming guidelines [PoMa87]. Thus far, the program develop-
ment methodology is the same as would be used for developing any
program in OCCAM.

The final step of the software development process is to apportion
modules amongst different processors in a network. The same practi-
cal considerations that influence the placement of channels when
using the shared memory model also need to be considered when

using the message passing model.

D. EVALUATION

The same types of testing were performed for the message-pass-
ing interface as were performed for the shared-memory interface.
This section provides the results of the message-passing model inter-
face kernel testing and compares the test results of the two interfaces.
The message-passing interface testing also utilized T414 Transputers
operating with a clock speed of 15 MHz and a link speed of 20 Mbits
per second. Since the message passing interface has no separate set
of procedures for use in application program modules, separate inter-
face procedure timing tests were not needed.

1. Node Distance Effects on Communications Rate

A test was performed to determine the effect increasing dis-

tance between nodes has on the overall data communication rate

between application program modules. In this test, a producer and

83

a -
P Y,

a Bl W 2 bt

£\

to .". LR LAY -*w -._.v-;.-'_ [

o

L . % =
AW

‘o

e d® 5

N consumer of data were separated by increasing hop distances. Data
v'ﬁ‘
Wy messages were sent from the producer to the consumer at the maxi-
i;:' mum possible rate. The resulting communications data rates for dif-
‘,I
;'::: ferent data message sizes are shown in Figure 5.6. Figure 5.7 provides
o

B a comparison of the maximum data communications rates for the two
ot
i interfaces.
;g'
,‘|.
,"
:::l

W
a
ﬁ:‘)
e =
|" o =
¥ 2 &
h-® S §

o 8@ & 1024 Bytes

:{ =4 -~ 512 Bytes

) é a = 256 Bytes

», e = -0~ 64 Bytes

: S8
o " S had

[\
a

W
)
b
5
D
f.
- Hop Distarice
a
D]
D)
:‘ ! Figure 5.6. Hop Distance Effects on Communications Data Rate
‘.'
o Figure 5.6 shows that as the hop distance increases, the
.\I
b2 maximum data rate decreases. This decrease is rapid for first few
~I

\: hops, but less significant as the hop distance is further increased.
N This is because each additional hop represents a proportionally
)

2
'O

*y

A
0 84
%
o)
o

\‘.'\‘\ \ . I\h’~f| 'f\ f\ ".«-_r LS V'.\f,\ ~-\-(4'_‘ \I_ {

R T T A R R R R O S SV RO o O SO YOV Y o TR O O RO oo

smaller increment of in-line delay to the data transfer. This same

- - e o

effect was shown for the shared memory kernel in Chapter IV.

¢
8
!
!
¥ 1000
1Y h
¥ 900
K g 800
) - S \ :
T 35 7001 @ Massage Passing
D g 5] \ -6~ Shared Memory
L/ 5]
@ g 6007 \
2 & s00
, S o ; \
: € S 400
" E& Nk
o g = 300
j 5 X
: 200
100
Ln 1
¥,
. 04— v v — ey ——nf—
0 1 2 3 4 5 6 7 8
) Hop Distance

Figure 5.7. Comparison of Hop Distance Effects

- s
VY

Figure 5.7 shows that for smaller network distances, the
message passing interface has a significant data communications rate
advantage over the shared memory interface. However, as the net-

\ work distance between the producer and consumer nodes increases,
\ the communication performance difference between the two
interfaces decreases. In both cases, minimizing the difference
between the producing and consuming nodes improves performance.
With the message-passing model's greater data communica-

! tion rate, it might be expected that performance of processes on

85

d

v , . , _ . . s .. ~ '
W0 X N B ..n.. '.ﬁ -‘.I'. R » !N.. |.!‘| S P0Y .q'.‘!".,.o \‘!’u LS ..l "“!‘l 5.370.8°,0° l‘.\ AL Wt .' o 2 ol ‘; by '{N‘- *

Aot

[
.
[y
[y

-

R X AR T A AN VU UR Wy 1ed ot el AV 0at Ba? 040 Vgt a2V pie“a¥g VR ‘|"’a SR L A S o o1 ~aba’, *n*--.!"-

7
A
®
La
Lo 1
.
nodes in the path between a producer and consumer would be "
w
iy
degraded to a greater degree with the message-passing model than ."
with the shared-memory model. Figure 5.8 shows the intermediate :::"‘
l',, (]
process degradation for both interfaces.)
N
1.0
d"' }
2 0.9) - . ?::
c 08 r—_ﬂ—v - e
£ e —— — 2
5 o7 ®
s - - L
a 0.6 AT
g - ~
3 0.5] ::r
° Y
‘g 0.4 o
g 0.3] 13_1
g 02] & Shared Memory | =Y
T -~ Massage Passing ‘
0.1 ":.A
- .l
0.0 ' v v Y r v N
0 200 400 600 800 1000 1200 x
Data Size (bytes) o
)
.Y
A

Figure 5.8. Intermediate Process Degradation
During Communication

Yinds

N
=~

As can be seen, the degradation for the message-passing f.:
Ny

model is less than for the the shared-memory interface. The reason ®
-
for this behavior appears to lie in the number of messages an E‘,
u_:
intermediate node must process when using the two interfaces. In f;{’
o

the shared-memory model case, each production/consumption cycle

u
requires at least the transmission of three messages between nodes o
N0

(an await message, an advance message, and either a put or a get o
AN
86 N
N

Q
9 |

A A o R e e T A e

ok
"]
2
w U
G2
message). The message-passing model only requires that two v
\-'). 2
W
messages be sent (a receiver ready message and a data message). As °
shown in Chapter IIl. a greater degradation should be expected when .g
using more messages to communicate a given sized data element. Ao
W
2. Hardware Link Sharing Effects on Communication Rate =
A
In the message-passing model, several global channels will :.f
.
likely use the same physical link for network communication. As with ';.-Z;
"“f
shared-memory interface testing, a varying number of producer/con- ;
W
sumer pairs were executed on two adjacent nodes to examine the @.:
kernel's performance. The results of this test are shown in Figure 5.9. ; >
S
Despite some performance degradation, these results show that a link ‘.
can be effectively shared between global channels. et ‘
)
)
600 Vi
] ®
9 Y
§ 500 - - I
S5 ; ~~ o
85 400 oy
Q] PN
£ o] N & 64 Bytes 2,
2 8 300 \‘T\ -~ 256 Bytes e
3 o] < 512 Bytes .
£ S] e -~ 1024 Bytes B,
38 200 N
9 ~] \\ :\-
g 4 e o
= 100 - . e
1 G DagTely
o —— oyt
0 +—v—t— —t— ! gy ; v — v tf’-
o 1 2 3 4 5 6 7 8 9 10 o
Number of Producers X-
o
Figure 5.9. Shared Hardware Link Communication Rates ; ‘
N
®
@ %
87)
‘-'_ d
w5
T
"
°
=
A
" o

g "-R.’V " ‘.r,'-'_‘-"’.' NPy .r '.' i W e e ‘.r', N ._.\ Ry .'\._. .-,‘..,..: N [__.—\n .- .~‘.- _\.r\.:\.\ -

Y Y Y Wy

T

120,15,

sty P A A T T o s e O T e R e T R R TR S R VT R AT T (Y

RAMT R A YN - »_! g o TR 4, RS R W, 4 J U e LA <« X
39

]

'

i¢

3. Multiple Link Effects on Communication Rate X

W

Testing of the message-passing interface with a varying num- J

ber of links active was performed for the message-passing interface. _
The results of this testing are shown in Figure 5.10. This testing
£:)
revealed the same type of kernel data rate limitation found when o
testing the shared-memory model interface. Although the data rate of ~
b

the message-passing kernel is significantly greater than that of the -
shared memory interface, the message passing kernel's data rate limit -
remains less than the capacity of one hardware communications link. :
A

Q

700 i

]

600 N

2 :c‘: 1 \ .

o = : S

o .
- 500 \ K

T 1 .

= § 400 N - 64 Bytes |
% 3 | \ \ - 256 Bytes e

S5 300 A = 512 Bytes x

c a ¢)

g o] \\ < 1024 Bytes :
ES 200 o

S ¢] ! N

~)
0 N N 1 T T T T :‘ ;

0 1 2 3 4 5 e

Number of Links Active "
l.
Figure 5.10. Multiple Hardware Link Communication Rates Ay
)

.‘

o
3

‘

¥

88 4

o
3
] '
3

4

X RS ARV S)

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has evaluated the performance of an isolated Trans-
puter and the performance of two abstract programming interfaces
with distributed kernels for a network of Transputers. The results of
the evaluation show that, although the use of a distributed kernel
reduces the effective performance of individual Transputers in the
network, the performance remains relatively high. In general, the
performance of the message-passing interface was superior to that of
the shared-memory model interface. This comparison should not,
however, be taken as absolute. There are improvements discussed in
this chapter that can be made to both interfaces which could signifi-
cantly affect this comparison.

Thus far, all evaluation of the abstract programming interfaces has
been based on testing. The programming interfaces also need to be
examined on the basis of whether or not they can be effectively used in
the development of distributed programs. By its nature, such an
assessment is subjective and prone to be influenced by one’s prior
experience and personal programming style preferences. Based on
the experience of developing test and example programs for use with
the interfaces, it appears that both of the interfaces do simplify the
programming of a physical network of Transputers. The primary fac-
tor in this is that the programmer is isolated from having to consider a

specific physical configuration of a network at all stages of program

89

...............................

B Ty Y TR Vi e PR Ty oy AT U A Tt L T A e A T R T G A T O R Bt Iy

XA

-
%% |

£3

L

o

e

..
% 5 v

‘f"
-

Nl

]
-

l:¢

y X

oy

g A A,

" L L A

NN NN T GO T IR S

AN

. s cyT} e
ANl

Fom_a
-

v-l’"

WS R RN LT R R I R I I I i Rt IR S S PRI IR I, IR - . -~ - S - - “ o~ !
e Y -V) f ’ Wi T -'.-" B PN A A W N".c._ P S -n"‘v LSRN \f‘\’ & \n“‘-f » \-r_- -.\h . \('\ N, N-\v’\- -J‘ > _\.r\ A
bt) Ty, RaASal AR PNl L) » D W : -

.l 128 B8 A8 8 €l 80 ha b n e e 8'm 3 A Ata dia Atk Bvardbe nt AR®
(YO 0 . G "Rl Gt ¥ 0 et 'R0 0 4 QI 4 RN A% %% 9 WiN At [t

development. Only after the program is developed need a particular
configuration be considered, at which point the physical configuration
is described by a set of simple data tables.

Both interfaces accomplish the ¢oal of isolating the software
designer from physical configuration considerations. There was, how-
ever, no clear choice as to which interface methodology was the over-
all “best” from a programming standpoint. Each methodology had
certain advantages and disadvantages. In general, the initial design,
development, and coding of a distributed program was most effectively
accomplished using the message-passing model. However, once past
the initial implementation of a program, modifications, either to add
additional functionality or to correct initial design errors, are usually
required. In most cases, these modifications and additions were eas-

ier to make when using the shared-memory model interface.

B. RECOMMENDATIONS

As was mentioned previously, the programs for these prototype
interface implementations are not fully optimized. As a direction for
further work in developing the abstract interfaces for a network of
Transputers, several modifications to the interface implementation
should be considered. In general. the same types of changes can be
made to both interfaces to improve performance. Some suggested
changes are listed as follows:

* The message packet format can be improved. The current mes-
sage format is actually scheduled as three separate transmissions:
transmission of the header, transmission of a size value, and
transmission of the data array. Efficiency can be improved by
reducing the number of required transmissions. For example, the

90

\ LA

& e F

AR T O

“I‘"l

. e T N

Sl man et

}'2'.“:'1':"1' "

RS

AR A

IR AR R LRI

A

.‘.‘ X e

header information and the data array could be combined into a
single array transmission preceded by a size transmission. This
would eliminate one scheduled transmission each time a message
is handled.

The transmission of messages within the kernel uses OCCAM
communications channels. This transmission is performed by
processor-controlled memory-to-memory transfer. When the size
of a data message is large, this decreases the performance of a
node. A simple memory manager could be incorporated into the
kernel to allocate space for messages in transit so that the trans-
fer of messages within the kernel could be performed by commu-
nicating pointers or handles to the messages via the OCCAM
channels.

In the case of the shared-memory model, the interface only
transfers data from a shared-memory segment to a remote node
when an application program module at the remote node requests
the data. If it is known in advance that certain remote nodes or
modules will require frequent access to a node’s shared memory
segment, performance could be improved by having the dis-
tributed kernel automatically and periodically transfer selected
segments of globally shared memory between nodes.

Many of the data structures within the kernels are sparse. As the
size of a network becomes larger, the storage required for these
structures will also become larger. At some point, it is likely that
a compressed storage scheme for the kernel data structures will
need to be adopted.

In addition to these performance improvements, the kernel

should be modified to include a distributed algorithm for examining
the network to determine a network’'s physical configuration. Use of
such an algorithm would save the software designer from having to
specify the physical configuration of a network as the last step of the
design process. More importantly, however, to support fault toler-
ance, such an algorithm could be used to identify an altered physical
configuration so that alternate message routing paths could be

established.

91

O P N N T NN N P N I N N L A R S

o A

- ..

-y Y WU W o o M e N
DT YY YL

&

INEL St nl o e ity

5%

‘e

>R

AT)

R AL AA AL

A

’
> ¢

K
.y

),

\-'.
8
\ (3
o4
Se 8
.

APPENDIX A .

‘ DETAIL PUTER TIMING TE FI TION >
W,
&)
D E COD]
A. SUMMARY o=

W
The purpose of the timing test configuration and associated test oy
4
code is to provide a general framework for testing Transputer oot
performance characteristics. The detailed configuration of the test ,'
set-up is shown in Figure A.1. The test set-up consists of a central b

1 Py,
p “target” Transputer and four “satellite” Transputers, each attached to >
the target Transputer by a communications link. In addition, there L
are associated Transputers to perform the functions of control and of o '_
!
; data routing and recording. X
s b
.
B. SOURCE CODE N
1. Configuration Section 3
R

‘

TIMING TEST PROGRAM Ky

| -
f ¥
[: !
{{{ link cdefinitions 0,

VAL linkOout IS 0 :)

¥ VAL linklout IS 1 : by,
/ VAL link2out IS 2 : t
, VAL link3out IS 3 : =,
VAL linkOin IS 4 : b
VAL linklin IS 5 : oy

VAL link2in IS 6 : A

VAL link3in IS 7 : '

1) N
{{{ declarations :
! CHAN OF ANY am.mid.0, am.mid.l, am.mid.2, am.mid.3, v
mid.am.0, mid.am.l, mid.am.2, mid.am.3, -~

; x
J
92 4

! h]
) .~
.)
) b
3

N
1_

4 .‘5 'QJ.:*-- -i',:-..\:" -"-:"..',‘ '. '}J‘.:-‘ ' NI '.--'-.I;'I.;.\ -\-\'_'.) --.) -.. .J' ‘. F.a LR p) -'. \-‘- x_ ‘.. I(\'.\‘r‘\ .‘h*‘iﬁt.'\"‘\..\‘.\'.\'. .v-"f\-‘\."'."_ !

D X 2 2

mmmmmw b atALG et AL SLaL LR LR s ab A bACAEAR LA LESR AL L L T TV TNV

R

LY

KR A e

e o

T

e’

a

=I=] |4 echo

10 MHz 10 MHz

Py ok ik S ¥

-
o

10 MHz |

2

AR R Al

-,

Link Numbers satellite
and Frequencies 0 I
Are as Shown o

10 MHz

<i
o
%MHZ

1 v Lo %

echo [4= satellite | satellite

M Hz | target M e
>0 [10MHz| ™37 | 20 MHz | target 120 Mg -

0 MHz |

2 o5

satellite

q'\‘
10 MHz 5 Q’
“n"
I\‘

Figure A.1. Detailed Test Configuration ®
7

93

?.‘n)
Ny
5
T AT NTATA AL AN N LA AN A oY NV, RN AT CNL At -."'\."\"\"\'tx"\"\"-.’\‘"\"sf-.':-."\.*
I KX R o XN o EUbtl i dhihthdiedhth it X N B\ . . - A 2 - A - o - - - n -

A U T S T U I W L T M WU W W U W N W T SR AU R T TS AN W e, B> ol tet ba’ 04 ale® a8a 0" 8t Gaat * J0n iy S u|-~~_
hoy
®
'
o".‘

arm.echo.0, am.echo.l, amm.echo.2, am.echo.3, .‘_)
echo.am.0, echo.am.l, echo.am.2, echo.am.3, "f
host .echo.0, host.echo.2, :
echo.host.0, echo.host.2 : e
1}
¥ .'
{{{ SC target ,:,
...target procedure ":
P} e
{{{ SC satellite e
...satellite procedure
P} e
{{{ SC echo !
. . .echo procedure ‘
b w
3
PLACED PAR %!
{{{ echo O O
PROCESSCR 10 T4 i
{{{ channel placements !
PLACE echo.host.0 AT linkOout : ..o"
PLACE host.echo.0 AT 1linkOin : it
PLACE echo.am.0 AT link3out : - N
PLACE amm.echo.0 AT link3in : | 2
PLACE echo.am.l AT linklout : s,
PLACE amm.echo.l AT linklin '.‘.:e
i} : W
echo (echo.host .0, host.echo.0, .:-:‘:‘
echo.amm.0, am.echo.0,)
echo.amm.l, am.echo.l, 0) ®
11} . o
{{{ echo 2)
PROCESSCR 11 T4 . l;q
{{{ channel placements J :
PLACE echo.host.2 AT 1linkOout : l‘.
PLACE host.echo.2 AT linkOin : (]
PLACE echo.am.2 AT linklout :
PLACE amm.echo.2 AT linklin : .
PLACE echo.amm.3 AT link2out : !
PLACE amm.echo.3 AT 1link2in : ol
133 L
echo (echo.host .2, host.echo.2,)
echo.am.2, am.echo.2, ; ‘
echo.am.3, am.echo.3, 2) 2R
P} (::
{{{ satellite 0 ':\
PROCESSOR 13 T4 -
{{{ channel placements 4\’::-.
PLACE armm.echo.0 AT link2out : N
PLACE echo.am.0 AT link2in
PLACE arm.mid.0 AT linklout : o)
PLACE mid.am.0 AT linklin N
b} “::f
satellite (am.echo.0, echo.am.(, am.mid.0, mid.am.0, 0) ...
&
®
‘! {3
94 o
s,
(W
y\
g
D N N = e e e g e e]

!
i)
{ {{{ satellite 1
. PROCESSCR 21 T4
| {{{ channel placements
. PLACE amm.echo.l AT linkOout :
;: : PLACE echo.am.l AT 1link0in :
i PLACE am.mid.l AT link3out :
T’ PLACE mid.armm.l AT link3in
5 , }1}
K satellite (am.echo.l, echo.arm.l, am.mid.l, mid.am.1l, 1)
H
{{{ satellite 2
) PROCESSCOR 23 T4
i {{{ channel placements
& PLACE amm.echo.2 AT linklout :
b PLACE echo.amm.2 AT linklin
PLACE amm.mid.2 AT link2out :
PLACE mid.am.2 AT link2in
i 11}
) satellite(am.echo.2, echo.am.2, am.mid.2, mid.arm.2, 2)
11}
’
‘ {{{ satellite 3
2 PROCESSCR 12 T4
{{{ channel placements
{ PLACE amm.echo.3 AT link3out :
I~ PLACE echo.am.3 AT 1link3in
$ PLACE amm.mid.3 AT Llinklout :
: PLACE mid.arm.3 AT linklin :
1
L}
s satellite(am.echo.3, echo.am.3, am.mid.3, mid.am.3, 3)
. 1H}
4 {{\ target
i PRCCESSCR 20 T4
b {{{ channel placements
iy PLACE mid.am.0 AT linklout :
K PLACE am.mid.0 AT linklin
PLACE mid.arm.l AT link2out :
PIACE amn.mid.l AT link2in :
PLACE mid.am.2 AT link3out :
PLACE am.mid.2 AT link3in
1 PLACE mid.arm.3 AT linkOout :
b PLACE ami.mid.3 AT linkOin
z . }1}
target (mid.arm.0, am.mid.0, mid.arm.l, am.mid.1,
N mid.am.2, am.mid.2, mid.am.3, amm.mid.3)
1}
2. Target N Procedure
‘ PRCC target (CHAN QF ANY out.link.0, in.link.0, out.link.l, in.link.l,
s out.link.2, in.link.2, out.link.3, in.link.3)
{{{ description
. ~- This procedure performs communications with adjacent nodes and performs
! 95
iy
K
L]

A OOIC KN M p e N s

"W W P 2 o) A 1. Y L. T N ML PR b, wyW g
AR AT VRN 2 BN O Bttt -

0 'y $%0

M P %
o MR S e

calculations in a loop to measure the interaction of cammunication and

q -- calculation. In general, a timer is started and the cammunications and -
-— the calculation is started. When the comunications are camplete, the »
—— timer and the looping calculation are stopped. The time for the -
-- camunication and the nurber of loops performed during this time is '

‘ -— extracted and reported. 5

! HH

{{{ declarations '
VAL else IS TRUE : -t
one.second IS [1000000/64, 1000000]

ave.count IS 1 :

priority codes
VAL low IS
high 1s

- o

speed codes 1
VAL slow IS 0 : g
fast IS :

operation codes

] VAL none Is 0 : ‘
D VAL null IS 1: A
} VAL assign Is 2: ‘
) VAL add Is 3:
VAL sub IS 4: >
: VAL malt IS 5: ‘)
' VAL div IS 6: -
' VAL movel00 IS 7 : ,
VAL movel000 IS 8 : . ’
W

timedata.tsr

; VAL block.size IS 100000: ~
' VAL packet.counts IS [1,2,5,10,20,50,100,200,500, g
§ 1000, 2000, 5000, 10000, 20000, 50000, 100000] "

CHAN OF BOOL status :
h CHAN COF INT result : ~
133

test set

loop.op

VAL op.count IS 4 :
X VAL loop.pri IS low : i M
N VAL loop.loc IS fast :
X VAL cam.pri IS high : 3
. VAL cam.loc IS fast :

OO AN

N AT AT T T e Y Pt A A el S W LR L P AR L (e e

PANONOAIDIC I

1

PRI PAR

{{{ do cammnication and reporting
{{{ process declarations
INT trigger :

INT packet .count, packet.size :
INT loop.count :
INT start.time, stop.time :

[(block.size]BYTE link.data:
PLACE link.data AT 4096:

TIMER clock :

138
SEQ in.links = 0 FOR 5

-'c', o

SEQ out.links = 0 FOR 5
SEQ packet.count.index = 0 FOR SIZE packet.counts
SEQ
{{{ initialize for test
packet .count := packet.counts {packet .count.index]
packet .size := block.size / packet.count
P
{{{ take care of triggering
in.link.0 ? trigger

PAR
out.link.0 ! trigger
out.link.l ! trigger
out.link.2 ! trigger
out.link.3 ! trigger
status ! FAISE

)
{{{ start the timer
clock ? start.time
11}
{{{ do communication
IF
(in.links + out.links) = 0

{{{ time one second delay for no links active case

clock ? AFTER start.time + one.second(cam.pri]
1}
else

{{{ set up links
PAR

{{{ input links

{{{ start link 0 input

IF

in.links > 0
SEQ i = 0 FCR packet.count

in.link.0 ? {link.data FROM 0 FOR packet.size]

else
SKIP

}H
{({{ start link 1 input

97

A O o A G S L s D T Do OO P

LAy o

5

L
IS

e O Bl

®

v
- -

e OO e

o
-""".l'..b .c.o K !. L,

IF
in.links > 1
SEQ i = 0 FOR packet.count
in.link.1l ? [link.data FROM 0 FOR packet.size]
else
SKIP
FH
{{{ start link 2 input
IF
in.links > 2
SEQ i = 0 FOR packet.count
in.link.2 ? (link.data FROM 0 FOR packet.size]
else
SKIP
P}
{{{ start link 3 input
IF
in.links > 3
SEQ i = 0 FOR packet.count
in.link.3 ? {link.data FROM 0 FOR packet.size]
else
SKIP
11}
1}
{{{ ouput links
{{{ start link 0 output
IF
out.links > 0
SEQ i = 0 FOR packet.count
out.link.0 ! [link.data FRCM (FOR packet.size]
else
SKIP
)
{{{ start link 1 output
IF
out.links > 1
SEQ i = 0 FOR packet.count
out.link.l ! [link.data FRCM 0 FOR packet.size]
else
SKIP
3
{{{ start link 2 output
IF
out.links > 2
SEQ i = 0 FOR packet.count
out.link.2 ' [link.data FROM 0 FOR packet.size]
else
SKIPp
1)
{{{ start link 3 output
IF
out.links > 3
SEQ i = 0 FOR packet.count
out.link.3 ! [link.data FROM 0 FOR packet.size]
else

98

s ”_ A L e A A LA A e A AL
."0 c.o e .-.0.0 \ N ..~ L9 \h .0 4

) W0 0. 4N, R,

ahanaty RO N R L0 g9

S e

Y

-
-
-

=5

I
< b

)

wos WA

R R R R R T T R o

SKIP
P}
1}
bi}

11}
{{{ stop the loop count
status ! TRUE
11}
{{{ stop the timer
clock ? stop.time
133
{{{ get loop count results
result ? loop.count
}1}
{{{ report results
out.link.0 ! ave.count
out.link.0 ! loop.op; op.count; lnop.pri; loop.loc
out.link.0 ! comm.pri; comm.loc; in.links; out.links
out.link.0 ! block.size; packet.count; packet.size
out.link.0 ! start.time; stop.time; loop.count

1}
}H}
{{{ do looping calculation
{{{ process declarations
BOOL done :
INT iteration.count :
INT a, b, c:
(1000]BYTE move.data :
PLACE move.data AT 4096 :
b}

{{{ init calc variables
b := #FFFFEFFE
C := #FFF
Y1}
SEQ in.links = 0 FOR 5
SEQ out.links = 0 FOR 5
SEQ packet.count.index = 0 FOR SIZE packet.counts
{{{ do calculation loop
SEQ
iteration.count := 0
status ? done
WHILE NOT done
PRI ALT
status ? done
SKIP
TRUE & SKIP
SEQ
iteration.count := iteration.count + 1

-- Calulation to be done in the loop goes here

result ! iteration.count
i
1)
CQMMENT do no looping calculation
{{{ do no looping calculation

99

R N R AN T e e e D T D e R N Y Ny S

X
k%3

’
£

)
-
o

LT

&

L an g St

LT (A,

Py
LY

)

EE LT
e,

" g 7
[l I/
o

o~

1

v

{{{ process declarations
BOOL done :
1}
SEQ in.links = 0 FOR 5
SEQ out.links = 0 FCR 5
SEQ packet.count.index = 0 FOR SIZE packet.counts
{{{ do wait for synchronization with cammnication process
SEQ
status ? done
status ? done
result ! 0
11}
11}
11}

3. Satellite Node Procedure

PRCC satellite (CHAN OF ANY to.echo, fram.echo, to.mid, fram.mid,
VAL INT my.taqg)

{{{ description

-— This procedure provides for sourcing and sinking coamumications to place

-~ a cammunications load on the target node of the test configuration. If the
procedure is placed in a the data reporting path from the target node
to the host system, the satellite also passes along the data fram the
target node. Packet sizes transmitted fram this node are the same size

——~ as the packets being received by the target.

1}

{{{ declarations
VAL else IS TRUE :

INT trigger :

INT packet.count, packet.size :

INT start.time, stop.time :

INT ave.count :

INT loop.op, op.count, loop.pri, loop.loc :

INT comm.pri, comm.loc, mid.in, mid.out :

INT mid.block, mid.packet.count, mid.packet.size :
INT mid.start, mid.stop, mid.loop :

{{{ timedata.tsr
VAL block.size IS 100000:
VAL packet.counts IS [1,2,5,10,20,50,100,200, 500,
1000, 2000, 5000, 10000, 20000, 50000, 1000001
FH}

[(block.size]BYTE !ink.data:
PLACE link.data AT 4096 :

100

o N o’ A I ¢ R e - g ot A M . o ,
."-."i. (3 .A'.')! -l.."',.t 1Y, 4'\., ...I * ‘u' s ..'n".‘n.!'n B .l.'-'l L '-“'.“'. \..'- Y (N -.'-..'-,. ... () 8 Q, ..s N X c..;

A TACA AT 51 90 0 L 190 1% 4% 8% ¢ AR RARRANF AR NN PR URT b a0y ot atd a¥h gt

TIMER clock :
1}

PRI PAR
SEQ in.links = 0 FOR 5
SEQ out.links = 0 FOR 5
SEQ packet.count.index = 0 FOR SIZE packet.counts

SEQ
{{{ if 'primary' satellite pass on the trigger
IF
my.tag = 0
SEQ
fran.echo ? trigger
to.mid ! trigger
else
SKTIP

}H
{{{ wait for target start trigger
fram.mid ? trigger
1}
{{{ initialize for test set
packet.count := packet.counts {packet.count.index]
packet .size := block.size / packet.count
clock ? start.time
P
{{{ set up links
PAR

{{{ start link input

IF

. out.links > my.tag
SEQ i = 0 FOR packet.count

fram.mid ? [link.data FROM 0 FOR packet.size]

else
SKIP
11}
{{{ start link output
IF
in.links > my.tag
SEQ i = 0 FCR packet.count

to.mid ! [link.data FROM 0 FOR packet.size]

else
SKIP
11}
}H}
{{{ comlete test set
clock ? stop.time
FHE

{{{ 1if 'primary' satellite pass on the mid results

IF
my.tag = 0
SEQ
fram.mid ? ave.count

fram.mid ? loop.op; op.count; loop.pri; loop.loc
fram.mid ? comm.pri; camm.loc; mid.in; mid.out

101

A oy T Oy T P o A Nt 00

AR A

R

3

<o oy v B oay al ab Sal ‘ar

o
22

®
s

S,
o

7
P

y:.s\

7,/

l‘: ':

[elh

1'\1'

f o .
"l" B
hFEx T XE:

2z

iy

Vo
‘\

AN l‘-----\
AR oA Y

o

T T N R N T XN 0, o' Ra0 et . *Gal et va. 8% $a. 80t ety aln*, " et o, g
oa'4. } A - K I gha At B 9 Yt

‘.I

Y L)

g

;‘ from.mid ? mid.block; mid.packet.count; mid.packet.size
I fram.mid ? mid.start; mid.stop; mid.loop

/ to.echo ! ave.count

v, to.echo ! loop.op; op.count; loop.pri; loop.loc
to.echo ! cam.pri; comm.loc: mid.in; mid.out
A to.echo ! mid.block; mid.packet.count; mid.packet.size .
o', to.echo ! mid.start; mid.stop: mid.loop
4\, else
.::l SKIP
;:o 11}

’ {{{ report own timing results
o to.echo ! start.time; stop.time
W 3%

'|
’;::‘: SKIP
l‘
2

/ 4. Echoin in Pr.
\.l
;"n‘

)

Y PROC echo (CHAN OF ANY to.root, fram.root,)
1 to.am.0, from.am.0, to.armm.l, fram.amm.l, :
VAL INT my.tag)

; ’, {{{ description
'S -— This procedure echos timing results fram the target and satellite nodes to
W — the host system. The echoing procedure placed in the routing path from the .
e -- target to the host echos all the host data. %
ot b |
b

{{{ declarations !
5 VAL else IS TRIE :

¢

»,. {{{ timedata.tsr
VAL block.size IS 100000:
W VAL packet.counts IS (1,2,5,10,20,50,100,200,500,
94 1000, 2000, 5000, 10000,20000, 50000, 1000001

7 3%

g INT ave.count :
ot INT loop.op, op.count, loop.pri, loop.loc :

INT cam.pri, comm.loc, mid.in, mid.out :

» INT mid.block, mid.packet.count, mid.packet.size : (
:.0 INT mid.start, mid.stop, mid.loop : Y
X '
* INT trigger - !
'Q INT arm.start, arm.stop
% P}

o
; -S SEQ in.links = 0 FOR 5 ,
W SEQ out.links = 0 FOR 5 t
‘: SEQ packet.count.index = 0 FOR SIZE packet.counts '
3
-

) 102

8
¢
¢
u
J
¢
g
&

LI N

. - -

- o

1
W MY,

[20,8 &4

S g @ gt ¥

AT A" A,
. B

AR RN AT WUR AR NN

e

SEQ

{{{ if 'primary' pass on the start trigger

IF

my.tag
SEQ

from. root
to.am.0

else
SKIP
1}

=0

? trigger
! trigger

{{{ if 'primary' echo pass on the target results

IF

my.tag = 0

SEQ

from.am.0
from.am.(
from.amm.0
fram.am.0
fram.am.0
to.
to.
to.
to.
to.

else
SKIP
11}

root
root
root
root
root

ave.count

loop.op; op.count; loop.pri; loop.loc
cam.pri; cam.loc; mid.in; mid.out
mid.block; mid.packet.count; mid.packet.size
mid.start; mid.stop; mid.loop

ave.count

loop.op; op.count; loop.pri; loop.loc
cam.pri; cam.loc; mid.in; mid.out
mid.block; mid.packet.count; mid.packet.size
mid.start; mid.stop; mid.loop

{{{ report satellite timing results

from.am.0

to.root

fram.am.1

to.root
1}

?
!
?
!

am.start; am.stop
arm.start; am.stop
am.start; amm.stop
am.start; am.stop

5. Host (Data Recording) Procedure

PRCC root (CHAN COF ANY keyboard, screen,
{41CHAN OF ANY fram.u.filer, to.u.filer,
CHAN CF ANY fram.fold, to.fold,

fram.filer, to.filer)

{{{ description

-- This procedure runs on the host system.
-- run and gathers data from the network upon campletion of the test run.

-- The data gathered is sent to a disk file on the host system for later

-- evaluation or transfer.
-- on the host's screen.

A subset of the gathered data is displayed on

It triggers the start of a test

{{{ TDS library references

AN AT N

RN

103

P
L

S 'f' ‘s NN TN AT s...-’.-"'-a e,

,_-
ey

L g o8 Y J
i -

BRI MN

A - '., ".

L T e

« v

t

#USE "\tdsiolib\userio.tsr":
#USE "\tdsiolib\interf.tsr":
1}

{{{ declarations

VAL else IS TRUE : -
VAL trigger IS 1:

VAL uS.per.tic IS [64, 1) :

VAL tab IS BYIE 9 :

INT id. length, result:

[63]1BYTE id.string:
CHAN OF ANY data.file:

{{{ timedata.tsr
VAL block.size IS 100000:
VAL packet.counts IS (1,2,5,10,20,50,100,200,500,
1000, 2000, 5000, 10000, 20000, 50000, 100000]
1l

{{{ network report

INT ave.count :

INT loop.op, op.count, loop.pri, loop.loc :

INT commn.pri, camn.loc, mid.in, mid.out :

INT mid.block, mid.packet.count, mid.packet.size :
INT mid.start, mid.stop, mid.loop, mid.time :

INT am.0.start, am.0.stop, amm.0.time :

INT amm.l.start, am.l.stop, am.l.time :

INT am.2.start, am.2.stop, am.2.time :

INT arm.3.start, am.3.stop, am.3.time :

{{{ network channels

VAL linkOocut IS 0 :

VAL linklout 1S 1: .

VAL link2out IS 2 :

VAL link3out IS 3 :

VAL 1ink0in IS 4 :

VAL linklin IS 5 : ;

VAL link2in 1S 6 :

VAL link3in IS 7 : v
Y CHAN OF ANY from.net.0, from.net.2, by

to.net.0, to.net.2 :

RN 2

PLACE to.net.0 AT linkZout :

PLACE to.net.2 AT link3out : -
PLACE fram.net.0 AT link2in]
PLACE from.net.2 AT link3in "

]
v

130

PAR
{{{ set the filename and run the host system filer

O "N R ™ e MO UK 1O A KT M RR M WY W o W N W W W LY, W - LW el A A Sl Aty Paka Vi itk Pal Va} LA Sl AR N A Al

SEQ
[id.string FROM 0 FOR 6] := "time(l"
id.length := 6
scrstream.to.server (data.file,
from.filer, to.filer,
id.length, id.string,
result)
1}
. {{{ nun the test network
SEQ
SEQ in.links = 0 FCR 5
SEQ out.links = 0 FCR 5
SEQ packet.count.index = 0 FOR SIZE packet.counts
SEQ
{{{ trigger network
to.net.0 ! trigger
1}
{{{ receive network results
from.net .0 ? ave.count

fram.net .0 ? loop.op:; op.count; loop.pri; loop.loc
from.net .0 ? cam.pri; cam.loc; mid.in; mid.out
from.net.0 ? mid.block; mid.packet.count; mid.packet.size
from.net .0 ? mid.start; mid.stop; mid.loop

fram.net.0 ? am.0.start; amm.0.stop

fram.net.0 ? am.l.start; am.l.stop

fram.net.2 ? amm.2.start; am.2.stop

fram.net.2 ? am.3.start; am.3.stop

mid.time := (mid.stop-mid.start)*uS.per.tic{camm.pri]

am.0.time := am.0.stop-am.(.start
am.l.time := am.l.stop-amm.l.start
am.2.time arm.2.stop-arm.2.start
arm.3.time := amm.3.stop—amm.3.start
1}

{{{ put results to file

{{{ processor type

write.int (data.file,800,1)
write.char(data.file, tab)

11}

{{{ processor speed

write.int (data.file, 20,1)
write.char(data.file, tab)

1H

{{{ link speed

write.int (data.file,20,1)
write.char(data.file, tab)

P}

{{{ loop conditions

write.int (daca.file, loop.op, 1)
write.char(data.file, tab)

write.int (data.file,op.count, 1)
write.char(data.file, tab)

write.int (data.file, loop.pri, 1)

105

Dt Y WS AT A A A W A \:’ "'r LS '-J.ﬁn" o A N N N T AT A N T e e N A T N AT AT AT AT A N AT,
o ~ X Kl o » M o S X A N A N N M X . g g ~ . A A s 3 -

-

PN

YANY YLD
N N

<

A
2

o, f“(o “&ts‘.'; .

..1‘ ® :\1'

:\‘-;-

xf

-‘Y

AR

YR N
WAL

3
)

b

-yt . s
Tk b

Ly
o

1@

“x-te
["‘

R
et
-
LA

write
write
write
11}
{{{

= o

write

11}

write.
write.
write.
write.
write.
write.

.char(data.file, tab)
.int (data.file, loop.loc, 1)
.char(data.file, tab)

link conditions
write.

int (data.file,comm.pri, 1)
.char (data.file, tab)

int (data.file,camn. loc, 1)
char(data.file, tab)

int (data.file,mid.in, 1)
char(data.file, tab)

int (data.file,mid.out, 1)
char(data.file, tab)

{{{ cam.conditions

write
write
write
write
write
write
}1}

.int (data.file,mid.block, 1)
.char(data.file, tab)

.int (data.file,mid.packet .count, 1)
.char(data.file, tab)

.int (data.file,mid.packet .size, 1)
.char(data.file, tab)

i {{{ target results

write
write
write
write
11}

.int (data.file,mid.loop, 1)
.char(data.file, tab)
.int (data.file,mid.time, 1)
.char(data.file, tab)

, {{{ satellite results

write.
write.
K write.

write

write.

write

write.

int (data.file,am.0.time, 1)
char (data.file, tab)
int (data.file,arm.l.time, 1)
.Char(data.file,tab)
int (data.file,am.2.time, 1)
.char{data.file, tab)
int(data.file,am.3.time, 1)

newline(data.file)

2
11}

write

write

write.
write.
write.
write.
h\ write.

write

write.

write.

{{{ put results to screen

.int (screen, in.links,3)

int (screen, out.links,3)

.int (screen, mid.packet.count,7)
int (screen, mid.packet.size,7)
int (screen, mid.loop, 9)

int (screen, mid.time, 9)

int (screen, am.0.time, 9)

int (screen,
.int (screen,
int (screen,

newline (screen)

Fh}

armm.l.time,
am.2.time,
arm.3.time,

{{{ teminate host system filer
data.file ! 24

HHh

106

9)
9)
9)

B e A e e e R A e R b A e e

ST

ANy

e
)

T T O R O T 2 % 87008 A o " A0 2 4'e 4% s A¥2 % >ghe ‘BN hvatatal tatatal Vab oal tat e tul Sl N8 e Aok Anl Sl d tod Gub o

- -

~“¥ R X

-l
A y o - - v

APPENDIX B
TIMING DATABASE DESCRIPTION

"

A DISCUSSION . N\
The large volume of data generated by individual timing tests was
loaded into a database management system to facilitate ease of access

and aggregation of any future test results. The Ingres Relational

™ -~y

Database Management System, currently available on the departmental

mini-computer, was selected for this purpose. The Ingres database .

i - -

management system provides a wide range of tools for accessing and
manipulating data. These tools range from a database query language
that can be used to program complex data manipulations and opera-
;a' tions to a completely menu-driven interactive shell for accessing the
database.

This appendix documents the format of the Ingres timing
database. Also, some examples are provided on ways in which timing ’ ‘E
data can be accessed through the use of the query language. Complete
documentation for the use of the many features of the Ingres relational

database system may be found in [Re85].

-

B. DATABASE DESCRIPTION

[A relational database consists of a set of relations. A relation is, in

205 N

» turn, composed of a set of data fields. A relation can be thought of as a

table where the data fields represent the columns of the table. One

108

-
3% Y% %Y Ad

_h

._f~f._f\f.‘f._-'5v.':_¢ -r'.\’- -..r.\'v - i'r\'v "\"h ﬁnr.'-q_ SRR TCCRARS , \ W A T -'\-r\._ o~ e I \ \

a8 a0 R V0 Sl SiE Se0 Sol Tal Vol gl Cat tat

row of the table then represents one individual set of data entered in
the table.

In the timing database, there are several relations that are
defined. The first of these relations, shown in Table B.1, is the rela-
tion that actually holds the timing test data. This table shows each of
the fields in the timing relation, the type of data the field is formatted
for and the length of the data field (in bytes).

TABLE B.1
TIMING DATA RELATION DEFINITION

Relation Name: timing
column name type length
processor integer 2
procspeed integer 1
linkspeed integer 1
opcode integer 1
opcount integer 1
looppri integer 1
looploc integer 1
commpri integer 1
commloc integer 1
linksin integer 1
linksout integer 1
blocksize integer 4
packcount integer 4
packsize integer 4
loopcount integer 4
looptime integer 4
armOtime integer 4
armltime integer 4
arm2time integer 4
arm3time integer 4

109

- - e e

3,

o
v, 4"

The name of this relation is “timing.” Note that the fields defined

in this relation are the same as the data elements written to the host

system file by the timing test program of Appendix A.

There are two additional relations in the timing test database.

These relations, shown in Tables B.2, B.3, and B.4, provide for trans-

lating the numerically encoded calculation loop operation codes, the

timing test priorities, and memory locations in the “timing” relation

into a text description of the corresponding test condition.

TABLE B.2
RELATION DEFINITION FOR CONVERTING
ENCODED OPERATION CODE NAMES

Relation Name: opcodenames

column name type length

opcode integer 1
opcodename character 32

TABLE B.3
RELATION DEFINITION FOR CONVERTING
ENCODED PRIORITY NAMES

Relation Name: prinames
column name type length
pri integer 1
priname character 32
110
X) CQ.A o el .y N&' > ‘ {) .o | ‘N A "N\\ .0.0 AN 5 - -, N 0 2 7\ "N

T S R S AL S ¥
R T 0

Lo
1]
TABLE B.4 l.:::::
RELATION DEFINITION FOR CONVERTING ‘_
ENCODED LOCATION NAMES .‘:E
u'}z':: |
Relation Name: locnames R
column name type length : '
loc integer 1 E;V
locname character 32 ;: ‘
S
C. EXAMPLES a:::':
There are three database operations that are provided as exam- .E:';
ples of query language interaction with the database. These operations ,‘
are: loading an external text file of data into the database, retrieving ‘:..:%
information from the database, and, finally, transferring data from the oy
database to an external text file. X :
Figure B.1 is a listing of the query language instructions for o
transferring a file of test data from the timing test program into the "i
timing database. For the most part, these instructions are self ;'5;6"
explanatory. Of note are the formatting codes, “cOtab” or “cOnl,” &
associated with each of the fields. These formatting codes mean that :
the text file representation of of a field's data is a variable length char- ..y-i;
acter string terminated by a tab character or by a new line character. f—:. ;

111

X

)
"W %\ A L L S NN AP a2 i W S P S A P) Y o Wy T ALY \
T, Y St T RS ml'ml'o.l‘l. a8 .t- (3 P l(' 2 ‘ -,- q' {N' Nal g " ALY Wit R] \ M - WV " eV W .- .

I LT PLYL]

Ly a¥s ati'a by gty TNUNd B OBV B 0l a5 b wal W e Vel U Vol ial Ual the B Wed » L WO WO] ViIAANU 44 URST Y ::‘
'

e
e

copy timing ns

h \
processor = cOtab, -

procspeed = cOtab, W
linkspeed = cOtab, ’ s
opcode = cOtab, iy
opcount = cOtab, t.:
looppri = cOtab, - o
looploc = cOtab,
commpri = cOtab,

commloc = cOtab, Iyt

linksin = cOtab, 5

linksout = cOtab, e,

blocksize = cOtab, et

packcount = cOtab, '
packsize = cOtab, K
loopcount = cOtab, gx
looptime = cOtab, b
armOtime = cOtab, '
armltime = cOtab, ﬁﬁ

arm2time = cOtab, -
arm3time = cOnl e
) 3
from "/work/ingres/time.file" e
A

Figure B.1. Lis for Loa he D . §
N

’!

L,
Figures B.2 and B.3 are examples of query language data ey
retrievals. In Figure B.2, the time (in puseconds) for single link bidi- :‘_‘:
rectional communication of 100,000 bytes with a packet size of 10 g@
R

bytes is retrieved for all types of processors. The results of this o
]

retrieval are also displayed. B
\)
In Figure B.3, the same retrieval is processed but, instead of Q
displaying the results, the results of the query are used to form the ;3
b

new relation “new_relation.” :3'-
i
%
o)

)

112 A

U
b X '1‘,'l‘..l“

retrieve
(
timing.processor,
timing.looptime
)

where
timing.linksin =1 and
timing.linksout =1 and
timing.packsize = 10 and
timing.opcode = opcodenames.opcode and
opcodenames.opcodename = "null loop"

sort by
timing.processor,

timing.looptime

Executing . . .

|proces| looptime |

| 414| 191659|
| 8001 123143

Figure B.2. Example of Retrieval for Display

retrieve into new relation
(
timing.processor,
timing.looptime
)

where
timing.linksin =1 and
timing.linksout =1 and
timing.packsize = 10 and
timing.opcode = opcodenames.opcode and
opcodenames.opcodename = "null loop"

sort by
timing.processor,

timing.looptime

Loiaa T

o

Figure B.3. Example of Retrieval for Forming a New Relation

113

M T
2

=g

ot - L5l ol ot
'&s?¢ﬁﬁf0’3

2% S

— B LU P, o - - ()
B e e e e o o e e e e e

T R T S T R T T e o T I T N N TS e O T W N S R O N O R I I L T T Y, “4% 400 .b.i'.'
\J

o,
As can be seen in Table B.5, which lists the characteristics for o
2
this new relation, the fields in the new relation inherit their charac- ‘
teristics from the relation from which the field originated. :
::3:
TABLE B.5 B
‘I'
RELATION DEFINITION FOR THE RETRIEVED NEW_RELATION R
3
J‘I_'"
Relation Name: new relation o
column name type length >
4
processor integer 2 o
l looptime integer 4 i
0
R
3. Data Unloading 5
\$
Figure B.4 shows the query language listing for transferring \
the previously created relation “new_relation” to an external text file. :;
As with the loading of data into the database, a formatting code is " o
hY
associated with each field to be transferred to the external text file. __ ‘
N
The interpretation of these formatting codes is the same as for the Bt

formatting codes for loading the database.

AL,

copy new_relation ;
(-

processor = c0Otab, :

looptime = cOnl

) o,
into "/work/ingres/text.file" o
¢
"{]
Figure B.4. Query Language Listing for Unloading the Database E '
-

n

e

»

2
114 :.f 3
o
N

)

o

N
hi

..... e UL A A A R~ R R A o m Sk A A A e B a . v .) »
A T T a1 VDS o e A e e, e T U S o TR P RN A et P o A e

gh

*opet et a7 ata" Ua¥ S0 Y. CR O AR L LR L AR O AU W WU W W
APPENDIX C
D ED RCE DE FOR

A. SYMBOLIC CONSTANTS

{{{ LIB this is LIBRARY "\ecslib\ecssyab.tsz"
... Library ID

{{{ VAL Declarations

{{{ useful symbolic constants

VAL ELSE IS TRUE :
VAL NIL Is -1:
VAL QUTPUT Is 0 :
VAL INPUT Is 1:

1}

{{{ definition of system limits

—— define the maximm size of an individual message
VAL MAX .MESSAGE .SIZE IS 1028 :

— define the maximum size of one node's part of the
-— globally shared memory
VAL MAX.DATA.PER.NCDE IS 4096 :

— define the maximm nmumber of event counts allowed
-— in the system
VAL MAX.COUNTS IS 256

-~ define the maximum number of event counts to be
-- maintained by one node
VAL MAX.COUNTS .PER.NCDE IS 16 :

— define the maximmm space allocation for the waiting

-— process lists
VAL MAX.AWAIT.QUE.ENTRIES IS 16 :

-- define the maximum number of processes per node
VAL MAX.PROC.PER.NODE Is 16 :

{{{ action codes for cammnications packets

VAL READ .CMD IS 10 :
VAL READ . REP IS 11 :
VAL AWAIT.OMD IS 20 :
VAL AWAIT.REP IS 21 :
VAL AWAIT.QUE.FULL IS 22 :
VAL ADVANCE .CMD IS 30 :
VAL ADVANCE . REP Is 31 :

115

L YYUTATAS TR A AN R TAS A A LR Y, N ; AN %) S T I P T e
N N e N L e e N R N Y NN T AR A A W

—.’.._'OI “

N A T
3

'~

HARED MEMORY ABSTRACT
TERFACE LIBRARY

LI P S

S

A

PN

VAL TICKET.QD IS 40 :

VAL TICKET.REP IS 41 :
VAL GET.QD IS 50 :
VAL GET.REP 1S 51 :
! VAL PUT.QMD IS 60 :
{ VAL PUT.REP IS 61 :

p 1}
11}
}h}

; B. KERNEL PROCEDURE

' PRCC ecs.kernel([] (2]CHAN COF ANY links,
VAL INT node. id,
VAL []INT count .node,
VAL (]INT count .size,
N VAL []INT node . Link)
! {{{ description

—— Event Counts and Sequencers for the Transputer

-- This program is an distributed kernel for implementing event counts and
-- sequencers on a network of transputers. It should be run at high

~- priority in parallel with application program modules. The application
~— program mocdules are linked to the kemel via bidirecticnal cammnication
~— channels that are elements of the links channel array parameter.

b}

{{{ libraries
#USE "\ecslib\ecssynmb.tsr"
) 1}

{{{ local declarations

A {{{ local abbreviations
VAL INT num.nodes 1s SIZE node.link :
VAL INT num.counts Is SIZE count.node :
VAL INT no.links IS SIZE links :
B VAL INT no.h.links IS 4 :
! VAL INT no.s.links IS no.links - no.h.links :

11}

{{{ channel declarations and assignments
b — channels for kemel control of the hard/physical communications links
- (2*no.h.links]CHAN CF ANY hard.links :
3 PLACE hard.links AT 0 :

1

{{{ camunications data structures

— basic format of a received cammmnications header

(6]INT header :

[JINT short.header IS (header FROM 0 FOR 2]
> INT action.code IS header [0]
Y INT count.id 1S header (1]
116
. . : Lol -’.--'..-f‘_.-"_-f -P.d : .. o _-\.r__-‘.

v an 0a? 81 0a% 1S dat Y 0a? Ug0 st 020 8 RS B8 O W XN NV AN N AR AU G NN,V N v ¥ W
INT to.node IS header (2]
INT to.proc IS8 header (3]
INT fraom.node IS header{a]
INT from.proc IS header [5]
INT data.size :

— potential formats of received data arrays
[MAX .MESSAGE .SIZE]BYTE data.array :

INT
INT
INT
11}
{{{

count .value RETYPES
i RETYPES
RETYPES

index
seg.size

[data.array FROM 0 FCR 4]
[data.array FROM 0 FOR 4]
[data.array FROM 4 FOR 4]

event count data structures

— variables to track allocation of shared resources

INT

node.counts,

base.count,
next .free :

— storage allocation for kemel data structures

[MAX .COUNTS] INT

(MAX.CCUNTS .PER.NCDE] (4] INT
[MAX .DATA.PER .NODE]BYTE
[MAX.AWAIT.QUE.ENTRIES] {4] INT
[MAX.AWAIT.QUE .ENTRIES] INT

count .array. indices :
count.array
node.data :
node.awaits :
free.list :

1
138
{
{

procedures
PRCC buffer.in.link(chan.in,chan.out)

PROC

buffer.in.link (CHAN OF ANY in.link, out.link)

{{{

— This procedure provides a 'soft' buffer for hard link input and ocutput.

description

— This buffer increases the overall throuahput of the node.

11}

{{{ declarations
[MAX.MESSAGE.SIZE]|BYTE data.array.0,
data.array.l :
[6] INT header.0,
header.l :
INT data.size.O,
data.size.l :
}H1
SEQ
in.link ? header.0; data.size.0::data.array.0
WHILE TRUE
SEQ
PAR
out.link ! header.0; data.size.0::data.array.0

e AP

in.link ? header.l; data.size.l::data.array.l
PAR
out.link ! header.l; data.size.l::data.array.l

117

- . T A" T m AT e TRt AT A TR TR TR T M G M R A RS LR AT et R - L PG LG SO L IR NN
T IO e g T

ol ol > v

~

@ g

P

A A)

-y

SO ".P;? o

[l

)
Ay

‘l}

VNN
vl" Pd

o

o 4
=

3

K.

12

e
P P |;‘u‘-r .,
’2

’
NS
2t

M A
A 4
Lol

L

AR

P XL,
Y

3

*y
-“'4'
4 5%

P
s "

o« \r_.. -_".‘-v" _-I'\f\-"‘

'S

in.link ? header.0; data.size.(::data.array.0

1)
{{{ PROC buffer.out.link(chan.in,chan.out)

PROC buffer.out.link (CHAN OF ANY in.link, out.link)

{{{ description

— This procedure buffers output to hardware commnications links.

— To improve performance, the buffer is sized to hold one message

— for each process at the node. The buffer is organized in a ring
— configuration. WARNING: This implementation uses variables

— shared between parallel processes. The ring buffer itself, and

— next in and out pointers are shared. When this procedure is run
— at high priority, the sequencing of the code guarantees that

— there will be no access conflicts to these shared structures.

— The purpose for this sharing is that the implerentation is

-~ slightly faster under average case loading conditions and is no

— worse than a 'normal' request-next-item buffer under any conditions.

1

{{{ declarations

— a local alternate name for the system li,it used to
— size the buffer

VAL INT buff.size Is " MAX.PROC.PER.NCDE :

-— pointers to positions in the ring buffer
INT next.in,
next.out :

-- define the ring buffer

[buff.size] (6]INT header :

(buff.size] INT data.size :

[buff.size] [MAX.MESSAGE.SIZE]BYTE data.array :

-- channels for comunicating between the input and output
— parts of the buffer

CHAN CF ANY wake.in,
wake.out :
b1}
SEQ
{{{ initialization
next.in :=0

next.out := 0
PH}

PAR
{{{ buffer input
{{{ local declarations
INT buff.no,
any :

b

o T R S T TR e P I L S Vi S T A A L S Wy
Laln e nla fu A Il Tt A T

Vo rrrr 2O

ey
~ &
e) .

o7 2,

-
5 % %y

- sy
P

5

Py
«
LN

2

1
[
-

ST

eI
P o

= if'. £

..:‘

L

oAl AT

:é“." P

-

)

 m
.

o |
“y
-

{4
v

PalT I gk 3 4
Sl T

gL

&

R

ffl'{f"

h e b
=

‘-"; ® o

P

[4% % 4
- By

.

tr.".

)

WY A YA T R R R P R T IN W Wa W WY

WHILE TRUE
SEQ
buff.no := next.in\buff.size
PRI ALT
-- if the buffer is not full
(next.in < (next.out + buff.size)) & SKIP
SEQ
-- input an item to the buffer
in.link ? header([buff.no]; data.size{buff.no]::data.array[buff.no)
next.in := next.in + 1
~— if the buffer was empty, let the sleeping ocutput know
IF
(next.in ~ next.out) =1
wake.out ! NIL
ELSE
SKIP
— the buffer is full, go to sleep until item output
wake.in ? any
SKIP
}1}
{{{ do output
{{{ local declarations
INT buff.no,
any :
b1}
WHILE TRUE
SEQ
buff.no := next.ocut\buff.size
PRI ALT
— if the buffer is not empty
(next.in > next.out) & SKIP
SEQ
-— output a buffered item
out.link ! header[buff.no]; data.size[buff.no]::data.array[buff.no]
next.out := next.out + 1
-— if the buffer was full, wake the sleeping input process
IF
(next.in - next.out) = (buff.size - 1)
wake.in ! NIL
ELSE
SKIP
— the buffer is empty, wait for a wake-up after some input
wake.out ? any
SKIP
}1}

1}
{{{ PROC send.packet (header, data.size, data.array)

PROC send.packet (VAL [6]INT header, VAL INT data.size, []JBYTIE data.array)

{{{ description
— This procedure packages messages for sending either to a remote node or

119

e O o T e P NI O (A TN = SRS ¥ 2 R e e ¥ e s s P R T S T A
. Q o) - . - B a L - L od tdh i - d - bd 2 i . ol A

r

PP

%

PAMESA R

L4

Ta
g

-

L A" 8
hY
3 AR

1@

P
v
[

a
)

~ =x ¥
[d

P

w_a2_ =
x

WAL SR
._»s"s;.“_s v)

P ok N]
wo s e ®

7
v

X4
0

AL
»

e
T et

iy
Al A A,

e
oy

-

‘-,\I\(

'.:_"u:_\.

Iat It Al ¥, (n

— to a local process.
HH}

{{{ declarations
-~ define subset of overall header for local cammnication
VAL []JINT short.header IS (header FROM 0 FCR 2]

VAL INT to.ncde Is header (2]
VAL INT to.proc IS header (3]
1)

IF

{{{ packet is to local procedure -- return it locally
to.node = node.id
links (to.proc] [OUTPUT] ! short .header; data.size::data.array
b}
{{{ else packet is for remote node =-- pass it on
ELSE
links[node.link [to.node]] [OUTPUT] ! header; data.size::data.array
)

11}
{{{ PROC process.packet (link.no)

PROC process.packet (VAL INT link.no)

{{{ description

— This procedure performs a function based on the value of the action.code
— element in the header of a cammnications packet. These functions

— correspord to the basic calls provided by the event counts and sequencers
— procedures (read, advance, await, ticket, put and get).

1hi

IF
{{{ cammand packet requires processing by my node -~ handle it
(tc.node = node.id) AND (to.proc = 0)
{{{ get characteristics of count.id
INT count.index IS count.array.indices[count.id]
INT current.count IS count.array[count.index] (0]
INT current.ticket IS count.array[count.index] [1]

INT base IS count.array({count.index] (2]
INT head IS count.array(count.index] (3]
Fh}
IF

{{{ read cormand
action.code = READ.CMD
—- represent the count as an array of bytes
[IBYTE out.count RETYPES current.count :
-— return the value of the count
send.packet ([READ.REP, count.id, from.node, from.proc, ncde.id, 0],
SIZE out.count, out.count)
11}

120

A -.;_.;_.;.' 7 w:.&:,.' NN ' ¥ .' N W A LA T T T AT N AT \.‘_:' AR

L

Cadll N

T T Y e Y Y T S N T o o S o N T e o Ly LR 0 T o N Y N T R S L

N

ot

\

Py

% 5% G

-‘l't't'":

1Y,

y

o

VAR ORI WY W W W W, ¥ P R NN N M Vg W B] O kDol " el AR A0 o Nl il R R Su Ot s il ol Sk L0gl Gnd 0,0 S0 1)

hd

Uy
eyt
{{{ advance cammand ':t
action.code = ADVANCE.QD U3
{{{ declarations o
Sy

-- Each time an advance is perfommed, the waiting process list !

-- associated with the target event count is checked to determine sy
-- if the advanced count is a waited-for count. If so, a wake-up
-- message is sent to the suspended process.

S

BOOL more.to.wake: :A!..
}1} a
SEQ G
{{{ initialization j‘,\-'
~-- advance the event count ,,Q-'
current.count := current.count + 1 o)
more.to.wake := TRUE ::"-‘
I 224
WHILE more.to.wake P
IF R
{{{ no items on the waiting process list :\»’l '
head = NIL N
more.to.wake := FALSE ‘:1;‘
11} o'
{{{ check the first item on the waiting process list °
ELSE >
{{{ abbreviations .:;f,
— extract the wating process list entries for the f: st item N
— on the waiting process list. P\f
INT wait.comt IS node.awaits[head] [0] el
INT wait.node IS node.awaits([head] (1] [
INT wait.proc IS node.awaitslhead] [2]]
INT wait.next IS node.awaits{head] (3] PN
1) oy
IF Lo

-3

{{{ count reached - wake the first process on the list
wait.count <= current.count
SEQ
{{{ send wakeup message
send.packet ([AWAIT.REP, count.id, wait.node, wait.proc,

ey '_

o

‘('.‘_2‘]‘

node.id, 0],
0, data.array))
11} ¢
[{{ remove the first item, return array position to free oL
list ®
next.free := next.free - 1 RSy

e

free.list [next.free] := head
head := wait.next
b}

"l,.":.\., I'd
Vg
" Pl 1’5

b1}
{{{ count not reached - no more to wake
ELSE
more.to.wake := FALSE
11}

: y‘:’. 5

% W ¥
P A s
A A

P}

n
o)

121

- - g
-
—.‘
s

£
5
by
t) *
’
<,
-
X
5
Y
o
L
H
: A Il o
‘.'2“5"{‘/‘
S dnd XA

O 2l pR W S

e B e e e i

a0 M 8 e

PR

MWW W U DV AU U M TR W U R T UM RS R WU WO W BAVALE

AL

{{{ await cammand
action.code = AWAIT.QOMD
IF
{{{ wakeup if count already reached
count .value <= current.count
send.packet ([AWAIT.REP, count.id, from.node, from.proc, node.id, 0],
0, data.array)
11}
{{{ add to waiting process list if a future count
ELSE
IF
{{{ no roam for an await list entry - send back await fail
next .free = MAX.AWAIT.QUE.ENTRIES
send.packet ([AWAIT.QUE.FULL, count.id, fram.node, fram.proc,
node.id, 0],
0, data.array)
11}
{{{ is room for an await list entry - add the entry to the await
list
ELSE
{{{ abbreviations
— extract and abbreviate the await list entries for the
— next available position (fram free list)
INT wait.count IS node.awaits|[free.list [next.free]] (0]
INT wait.node IS node.awaits([free.list[next.free]][1]
INT wait.proc IS node.awaits[free.list[next.free]] (2]
INT wait.next IS node.awaits(free.list [next.free]] (3]

{{{ handle list empty case
head = NIL
SEQ
wait.next := NIL
head := free.list [next.free]
11}
{{{ handle insert at head of list case
count .value <= node.awaits(head] [0]
SEQ
wait.next := head
head := free.list [next.free]
11}
{{{ handle all other cases
ELSE
{{{ declarations

— walk the list to find the proper ordered insertion point

— following local variables track position of the search

INT cursor,
prior :
b}
SEQ
{{{ initialize
prior := head

cursor := node.awaits[head] [3]
11}

122

A% N R, ALA 9,50, 4V ¥, A A

RIS % W W M T L e W A - LA L - L% LY A syl Rt . AR ELS N N
Ne " ‘ . ,\-.),\ , “'ﬁ‘\ TS e D A ..‘ \)‘\\'\ .

» o]

AApast):

N
»

e e

R A

SRl R st AL

Jr I, »

1.,{” :

. o ";r,': 3

,4’ s

s

.
[3

o
L)
A

s
A‘s

5%
1“!

CLR-2FAN

oL

-

T T X

e o o s

{{{ scan list
WHILE cursor < NIL
Ir
count .value <= node.awaits{cursor] (0]
cursor := NIL
ELSE
SEQ
prior
cursor

i= cursor

1= node.awaits [cursor] [3]
11}
{{{ insert into list
wait.next := node.awaits(prior] [3]
node.awaits [prior] [3] := free.list{next.free]
11}

1}

wait .node
wait.proc
Y next .free

{{{ build table entry - remove position from free list
wait.count :

count .value
fram.node
from.proc
next.free + 1

1}
138
11}
11}
{{{ ticket camand
action.code = TICKET.QMD
-— transfomm ticket value to byte array for transmission as data
[IBYIE out.count RETYPES current.ticket :
— seryd packet and increment the ticket value
SEQ
send.packet (([TICKET.REP, count.id, fram.node, fram.proc, node.id, 0],
SIZE out.count, out.count)
current.ticket := current.ticket + 1
}1}
{{{ put camand
action.code = PUT.COMD
{{{ local definitions
— define the location in the node.data array of shared memory
— for where to write the transferred data
VAL INT put .base IS base + index :
VAL [IBYTE index.array RETYPES index :

VAL INT

index.size

VAL INT put.size

Is
Is

SIZE index.array :
data.size - index.size :

I'-l’o NASA N .ni AL l' “’..I .ol ’ ;

1
— store the requested data array
[node.data FRCM put.base FOR put.size] :=
[data.array FROM index.size FOR put.size]
P}
{({{ get cammand
action.code = GET.CMD
-- determine the starting location for the read operation
~-- in the shared memory segment
VAL INT get.base IS base + index :
— send the requested data
send.packet ({GET.REP, count.id, from.node, from.proc, node.id, 0],

123

o acte e T e e S

g atgtala gty

\-'.‘J‘ ",

AR A

E

Tt

‘:‘.“%,. .? bl

: Gaall VS e S

ST

-
-

L o s e dm o Y &

FIT R

s

2
-

T A

B - _.-—.
A 'r':n Ny S g 1

o

- XYY
£485

i f. rf LSS,

g

[4

NAN

Iy

ASSS UREULPLTS Y

$ ot Ja® foi R

seg.size, [node.data FROM get.base FOR seg.size])
11}
1}
{{{ else =-- just pass the message on to its destination node
ELSE
send.packet (header, data.size, data.array)
P

1}
{{{ PROC build.packet (link.no)

PROC build.packet (VAL INT link.no)

{{{ description

— To reduce the intermal node communication load, message headers from local
— processes include only a subset of the elements used for cammnicating

— between nodes. This procedure ‘expands' a local camunications packet

— header into an external packet header.

b}

SEQ

fran.node := node.id
fram.proc := link.no
to.node := count .node [count ., id]
to.proc =0

1}

1231

SEQ

{{{ initialization
{{{ 1initialize the count.array and count.array.indices
SEQ i = 0 FOR MAX.COUNTS

count .array.indices[i] := NIL

1

node.counts := 0

base.count := 0

SEQ i = 0 FOR num.counts

IF
count .node (1] = node.id
SEQ

-- enter quick look-up index
count .array.indices[i] := node.counts
~- build initial count data
count .array [node.counts] (0] := 0
count .array [node.counts] [1] 0
count .array [node.counts] (2] base.count
count .array [node.counts] [3] := NIL
~- allocate shared memory segment
node.counts := node.counts + 1

124

LY

Sty " TR PRt P10 ’ Ly ¥ . 1
A ey B e e T N s ey N N Tt N S R

L
3
SECER [y 2

-
-
-

X 2™

e

-
-,

X

w

L

P R TR L M Y T T o o WA e YU RO O O OO N R] “2.0'8. 8’8 1p dg- B’ 402 A tat A ovat o RANLNIS AN YA 2 2 A% B%2. 0826 "6 Bal Ba® Ba¥, 02 027 ¥,

e,
o)

-
-
&

"

@
"
._;.
base.count := base.count + count.size(i] :u" ;
ELSE b,
SKIP Y]

11} rY
{{{ initialize the free list A
SEQ i = 0 FOR MAX.AWAIT.QUE.ENTRIES Ty Y
free.list[i] := 1 :‘:gf‘
next.free := 0 ha
b1} et
1} it

{{{ nun system r
PAR g
{{{ buffer hardware links e
PAR link.no = 0 FOR no.h.links e

PAR .
buffer.in.link (hard.links([link.no + no.h.links], links[link.no] [INPUT]) %
buffer.out.link (links[link.no] [OUTPUT], hard.links[link.no]) .‘

1}

{{{ monitor cammnications "::"
{{{ 1local declaraticns o
-~ The communications monitoring procedure uses a 'fair' implementation SO0
— of the ALT structure. In general, it provides that if a communication i !
—- was just received from one of several channels, that channel will have ﬁ

-— the lowest priority for the next execution of the ALT. In this way, o
-- no single cammnications channel cam 'starve' access to the kernel ::
— fram the other communications channels. The variables defined -x}.
— below are used to track the last cammnicating channel for this Y
- 'fair' ALT. Note that hard and soft links are treated separately.) '
Ly,

™

INT last.h, last.s:
- 1}
SEQ

o

{{{ initialization .f-':
last.s = 0 ~
’ last.h := 0 ”T*\{
}1} FaX
WHILE TRUE
PRI ALT bt
{{{ handle external hardware links W
ALT link.no = 0 FOR no.h.links 3
links[(link.no + last.h)\no.h.links] (INPUT] ? header; haly!
data.size::data.array e
: SEQ A
process.packet ((link.no + last.h)\no.h.links) ,,.,
last.h := (no.h.links - 1) + link.no N
}H -
{({{ handle local soft links A
ALT i = 0 FOR no.s.links NN
links{((i + last.s)\no.s.links) + no.h.links] [INPUT] ? short.header; - ‘
data.size::data.array 1.
VAL INT link.no IS ((i + last.s)\no.s.links) + no.h.links : R
SEQ N,
build.packet (link.no) N
process .packet (link.no) . _'-\
last.s := 1 + (no.s.links -~ 1) 3
RS ¢
9
]

125

CaN AN
SPSIA

- T T N L P o o‘\..
Y SRR \\'\ W ..‘-"\ "\ " k'\\ - \\

y_-.'c--r,‘vrﬁv O R \'.'.‘t.\G \'_\"'-.'"\" o7 RN Sy '.;_. .:\.—_--‘\.f“.-_ 8
h Ll » L L) a L) - a . - L)

)
.
U [
: 123 Y
t: }1}
R b}
¥ €
4
9'.
0
&
.‘: %
W C. READ PROCEDURE
X
N PRCC read([2]CHAN COF ANY link, .
™ VAL INT count.id, .
- INT count . value) .
Nl :
A {{{ description '
K -- This procedure reads and retums the value of the argument specified 3
. -- event count.
) I3
1
?’
E) . , -
K {{{ 1libraries b,
» #USE "\ecslib\ecssymb.tsr” X
111
> {{{ declarations ¥
Y — altemalte channel nares
™ CHAN OF ANY linkin IS 1link[0] :)
':' CHAN OF ANY linkout IS 1link[1] :)
R
-— cammnications data structures .
! [2] INT short .header :
INT data.size :
i [1BYTE data.array RETYPES count.value:
3 11}
SEQ
— request count value from kernel
4 linkout ! [READ.QMD, count.id]; 0
) — receive count value fram kernel
:,: linkin ? short.header; data.size::data.array
&
1) . 1
i
N D. ADVANCE PROCEDURE)
. LY
D
PRCC advance ([2]CHAN OF ANY link,
VAL INT count.id) 3
nd) 0
M {{{ description 1
: -- This procedure requests that the distributed kemmel)
. 'l
W
)
4 126
L}
)
o, h.
“
. y
l. 1 ! §

l’ LAV & B 1P BV R 7 - -t (R ET R R R R L R R R RS L BT ---,---..._.-......-.‘
.t‘l RIAASA -l.-lnl » A% ¥% .o 'e. Px. ‘ I ..‘l...o. .. w8 V! l- ’) .la " Ou. ’.' ".'\J‘ 'b- \rﬁ"'\'\.‘\'"\'. h.'..".‘\'\' .‘"

~-— increment the specified event counter.
PH

{{{ libraries
#USE "\ecslib\ecssymb.tsr"
}H

{{{ declarations

—- altemate name for channel

CHAN OF ANY linkout IS link[1]
11}

— request the advance action
linkout ! [ADVANCE.(MD, ccunt.id]; 0

E. AWAIT PROCEDURE

PROC await ({2]CHAN OF ANY link,

VAL INT count . id,
VAL INT count .value)

|

——
—~
—

{{{ description

-~ Perfom the await function on the specified event count and

await the argument count value.

Note that the waiting process table (node.awaits) in the
kernel that maintains the event count may be full.

In this case, the kernel returns a message to this process
identifying that this is the case. This procedure then
waits a period of time and retransmits the await request to
the kernel. If the await request is again rejected due to

a full waiting process table, the wait time is doubled before
retrying the await request. This process will continue until
either the requested wait~for count is reached or the await
request is accepted and placed in the kermel's waiting process
table.

O I O I I OO

{{{ libraries
#USE "\ecslib\ecssymb.tsr"
1}

{{{ declarations

— altemate channel names

CHAN OF ANY linkin IS 1link([0]
CHAN CF ANY linkout IS 1link{1]

— cammunications data structures

127

1""“\.;. e

h Y

,..
A,
>"."a pd

. -3

& ZLIzis e

L
7,

"
o N

o Nl Ve 00 Ny L L e D AR R e o a0 r 1 120 a8 Bat at et St et 8 "R el Ahat el o Y R ke8'2 4% 4°a 0%

Lt 2 . "
4
’
(2] INT short .header : e
INT retum.tag IS short .header (0] A
VAL []BYTE data.array RETYPES count.value : o
INT dumy .size : o
(4] BCIE chrmmy .array [
— structures for controlling retransmit of rejected awaits '
TIMER clock : .:.:
INT current.time, wait.time : 0
}H}) ;::’
SEQ "Y
-- request await fram kernel '
linkout ! [AWAIT.QMD, count.id]; (SIZE data.array) ::data.array ‘::
-— receive reply from the kernel :.s
linkin ? short.header; dummy.size::cdummy.array »'
{{{ check to see if the await was accepted 3t
IF 2
return.tag = AWAIT.QUE.FULL '
{{{ wait by binary back-off and retry the await request .l'i
SEQ :0,:
-~ initial wait time (short))
wait.time :=1 ¢
WHILE retum.tag = AWAIT.QUE.FULL
SEQ -
clock ? current.time ';'
clock ? AFTER (current.time PLUS wait.time) N
— set-up the doubled delay time Y
wait.time := wait.time * 2 by
- request await fram kernel O
linkout ! [AWAIT.QMD, count.id]; (SIZE data.array)::data.array ’:
-~ receive response from kernel : =3
linkin ? short.header; dummy.size::dummy.array N
}H R
ELSE A:..
{{{ do nothing ~- await was accepted i~
SKIP s
b L.
Hh s
Lt
]
)
l* 4
i
F. TICKET PROCEDURE L
e
PROC ticket ([2]CHAN CF ANY link, : g
VAL INT count . id, b
INT count .value) X
{{{ description -
-- This procedure request a reservation or 'ticket' from the :‘1_
-- distributed kernel for the specified event count/sequencer.)
-- The value of the ticket is retured in the count.value . Rt
{r‘“
)
-
128 2
. :‘
"
S
)

! ™, - -, " - ™ ! " LA 0y T e, - . et W e W o W R I T
T T Dt Ryl T T s s T e M v VT P Sy Wy s Ay Wy i ot

o »

0,8 0% (02", 2% $5% 0a® ot ot

b

parameter.

{{{ libraries
- #USE "\ecslib\ecssymb.tsc"
1

{{{ declarations
— altemate channel names

CHAN CF ANY linkin IS 1link{0]

CHAN OF ANY linkout IS 1link(1]

— camunication data structures

[2] INT short .header :

INT data.size :

[1BYTE data.array RETYPES count.value :
Y1}

SEQ

-— request ticket from kermel

linkout ! [TICKET.QMD, count.id]; 0

-- receive ticket from kernel

linkin ? short.header; data.size::data.array

N
AR

X

S

G PUT PROCEDURE 2
PROC put ([2]CHAN OF ANY link, v
VAL INT count. id, :

VAL INT index, N

VAL []}BYTE data.array) 4

{{{ description =
-- This procedure writes data to the shared memory segment o j
-— associated with the argument event count. The data array A
-- is written offset fram the start of the shared memory >
-— segment by the mumber bytes specified by the index ("]

parameter.

{{{ libraries
#USE "\ecslib\ecssymb.tsr"
FHi

{{{ declarations
— altemate channel name
CHAN OF ANY linkout IS link (1]

— convert the index value to an array of bytes for

R A N D O A N N A S N I N M e A A L P AR I N N AT T A

129

P T I T M S Uy S rh At S
Rl x y) "]

P
) Y
L

A
M
!

O

WA NG O WO WO PO WO POR YOO N U ORI

— transmission as data
VAL []BYTE index.array RETYPES index :

-— identify the size of the data arrays

VoL INT ir’ex.size IS SIZE index.array .

VAL INT data.size Is SIZE data.array :

VAL INT local.size IS index.size + data.size :

— define a local array for the data and index value
[MAX.MESSAGE.SIZE + index.size]BYTE local.array :
1H

SEQ
-- carbine the data array and the array representation of
-- the index value into a single array
[local.array FROM 0 FOR index.size] := index.array
[local.array FROM index.size FOR data.size] := data.array
~- request kernel to store the data array
linkout ! [PUT.OMD, count.id}; local.size::local.array

H. GET PROCEDURE

PRCC get ([2]CHAN OF ANY link,
VAL INT count .id,
VAL INT index,
[IBYTE data.array)

{{{ description

This procedure performs a read of the shared remory

segment associated with the argument event count.

The number of bytes read is detemmined by the size

of the argument data array. The bytes read fram

the shared memory are offset from the start of the

shared memory segment by the number of bytes specified
-- in the index parameter.
1}

({{ libraries
#USE "\ecslib\ecssymb.tsr"
b

{{{ declarations

— alternate name for the channels to kernel
CHAN OF ANY linkin IS 1link [0]
CHAN OF ANY linkout IS link (1]

— commumnications data structures
[2]INT short .header :
INT data.size :

K ":I A ’(\r'-f.‘l.-{,‘f"f\f\--.'d;' r_'l.'-' " AT AT AT A A \' N

Nagl

l

g -

N X

AN AN

PR KA

s “gen gt abn’ s g8 Yah val 0 ¢ L tal " AV ava s et tatat et

-— define the size and index retrieval parameters as

— an array of bytes for sending as data

VAL [IBYIL get.sgzcs RETYPES [index, SIZE data.array]
VAL INT spec.size IS SIZE get.specs :

Pt

SEQ
-- request the shared memory read operation
linkout ! [GET.QD, count.id]; spec.size::get.specs
—— receive the results of the read cperation
linkin ? short.header; data.size::data.array

131

T LA e A N A R B L R TR R B

A AP AT "-‘b*-'\"-"\‘v. AT
» '»

"‘:":'}'Il'l .

ey

X

"
RN ®

L e o

P =T

b]

[
Tk
L W 4

-g®

SRR |
r ' !

iy

7

'

.;?

l; [

1@ vy

.-
':{'; ':. ’v""‘

¢ 0 -
o (‘.-'

..
¥
L)

Tt
2

LA A

7

APPENDIX D
SAMPLE PROGRAM USING THE SHARED-MEMORY INTERFACE

A. DESCRIPTION

This appendix provides an example of the methodology employed
to write a program using the shared-memory interface developed for
this thesis. The programming example selected to demonstrate the
methodology is the bounded buffer problem. In this problem, a
producer passes data to a consumer via a bounded buffer or queue.
The buffer serves to "smooth out” variations in the data production
and consumption rates. To add slightly to the single producer

bounded buffer problem, this implementation of the problem will

provide for two producers of data.

B. MODULARIZATION

This particular problem can be naturally subdivided into three
basic modules. Each of these are listed and described below.

1. Producers '

Each instantiation of this module generates a continuous
stream of data elements at a specified average rate with some
characteristic random variation in the rate. The data elements
produced are placed in a segment of memory shared with the
consumer of the data. Access to the shared-memory segment is
controlled using an event count and a sequencer. The sequencer

controls the access of the two producers to the buffer. The associated

...............

event count is advanced when either piroducer uses its ticket to add
data to the buffer.
2. Consumer

This module continuously removes data elements froi. the
shared memcory buffer at a specified average rate with some
characteristic random variation in the rate. The average rate for the
single consumer should be at least equai to the total of the producer's
rates. If not and the consumer can not keep up with the producers,
the buffer will eventually fill and the producers will be forced to
remain idle while waiting for the consumer.

An event count associated with the consumer is advanced
when a data element is removed from the buffer. Note that if the
producer and consumer event counts are initially equal, the number of
data elements in the buffer will be equal to the difference between the

event counts.

C MODULE CODING

The code for each of the program modules should then be
developed. The following sections provide an abbreviated listing of the
code for the modules.

1. Producers

PROC producer ({2]CHAN OF ANY link,

VAL INT in, out)
#USE "\ecslib\ecsproc.tsr" -— the interface library
#USE "globals.tsr" -- global constants
INT my.ticket :

133

A

R

,....<
A2
}Ql 3 e N (

2Ol

{data.element .size] BYTE

WHILE TRUE
SEQ

data.element :

insert code to produce a data element

ticket (link, in, my.ticket)
await (link, in, my.ticket)

await (link, out,

(my.ticket - data.buffer.size) + 1)

put (link, in,

(my.ticket + 1)\data.buffer.size, data.element)

advance (1ink, out)

2. Consumer

PRCC consumer ((2]JCHAN OF ANY 1link,

VAL INT

in, out)

#USE "\ecslib\ecsproc.tsr"

#USE "globals.tsr"

INT
[data.element .size] BYTE

SEQ
my.count := 0
WHILE TRUE
SEQ
my .count

the interface library
-— global constants
my.count
data.element :

i=my.count + 1

await (link, in, my.count)

get (link, out,

my.count\data.buffer.size, data.element)

advance (1ink, out)

insert code for

consuming the data element

D. APPORTIONMENT OF MODULES

To best demonstrate the nature of the abstracted programming

interface, the apportionment of modules will be done in two different

ways. The first way will assign all modules, shared memory, and event

134

: :";.J"-‘f-'-f-'d‘\ NN AN AERE W AR AERY .\4‘\4“\""':‘ SR ‘ -‘ . ﬂ:-
e N h 2. W% ! P, S VN NS P -

e

PN T Ty “x
B

-

%

P XA

LA

“\

rras

o 8

S e A A

L4
Ly
™

N
.

":\ | J

N

i oy

%

e I

.
LR Y

LR SR
U

Ty r

;-4

DAK

R
.

X
b el

"

WA AR
- -

>

r
.

PAFAY JE 28 gE S | t
AT A hd

h u e i Nl l,“"
:,ﬂ(/.“lr.-‘

DO

0% 0)

counts to a single Transputer. The second way will distribute the

modules, shared memory, and event counts on three different

Transputers.

1. Single Transputer

Library aport.tsr

#USE “globals.tsr" -- global constants
— symbolic constants for counts

VAL in Is 0 :

VAL out IS 1:

-— count node assigmments (which node maintains the count)
VAL count.node IS {0, 0} :

— shared memory segment sizes
VAL count.size Is [0, data.buffer.size]

— network adjacency matrix to match particular
— physical configuration. This matrix matches
— a clockwise ring on a B003 board.

VAL node.link Is [[0,2,2,2],
[2I0l212]I
(2,2,0,21,
2,2,2,01]
PROC nodel () -— procedure to run on Transputer 0
#USE "\ecslib\ecsproc.tsr" -- the interface library
#USE "procs.tsr" -- library of procedures
#USE "aport.tsr™ -- apporticnment structures
VAL INT node. id IS 0 :
[8] {2]CHAN COF ANY links :
CHAN OF ANY pro.one.link IS links(4]
CHAN OF ANY pro.two.link IS links[5]
CHAN COF ANY consure.link IS links[6]
PRI PAR

ecs.kermel (links, node.id,
count .node, count.size,
node. link [node.id])
PAR
producer (pro.one.link, in, out)
producer (pro.two.link, in, out)
consuner (consume . link, in, out)

135

O A A A A A S R A AT

A

' g g $8] »
b S At 't

Z

T v .
. L)
P AR
A -

=
£

e Y

o e .

"o

.,

Rla 4

P

i g 4

s

CC L'

NN T TR N

AR g

W)

Pl g
e)

LA 4
T

LAl

l‘l'

Y

FEL AT

PP AR

-{'I‘..

'.".
» .’ " .. .".'- ”('{‘I‘J-{. - -

B ‘o
'

PRI AR

&

[P
o

2. Three Transputers

Library aport.tsr

#USE "globals.tsr" -— glcbal constants
— symbolic constants for counts

VAL in Is 0 :

VAL out Is 1:

— count node assigmments (which node maintains the count)
VAL count.node IS8 {0, 2}

—— shared memory segment sizes
VAL count.size 1S [0, data.buffer.size]

— network adjacency matrix to match particular
— physical configuration. This matrix matches
— a clockwise ring on a B003 board.

VAL node.link IS [[01212;2]1
(2,0,2,2],
(2,2,0,2],
2,2,2,0]]
PRCC nede0 () ~- procedure to run on Transputer 0
#USE "\ecslib\ecsproc.tsr® -- the interface library
#USE "procs.tsr" -- library of procedures
#USE "aport.tsr" -- apportiocrment structures
VAL INT node. id IS 0 :
[5] [2]CHAN QF ANY links :
CHAN OF ANY pro.one.link IS 1links([4]
PRI PAR

ecs.kernel (links, node.id,
count .node, count.size,
node.link [node.id])
producer (pro.one.link, in, out)

PROC nodel () -- procedure te run on Transputer 1
#USE "\ecslib\ecsproc.tsr" =-- the interface library
#USE "procs.tsr" -- library of procedures
136

e e e e R

y&s

AR A

!
Pt 4"4

o~y —

PN

»

' S T S

T g

T ool N

& o

Y

#USE "aport.tsr" -- apporticmment structures
VAL INT node. id IS 1:

[5] {2]CHAN OF ANY 1links :

CHAN OF ANY pro.two.link IS links(4]

PRI PAR

ecs.kernel (links, node.id,
count .node, count.size,
node.link [node. id])
producer (pro.two.link, in, out)

PRCC node2 () —— procedure to run on Transputer 2

#USE "\ecslib\ecsproc.tsr" -~ the interface library

#USE "procs.tsr" — library of procedures
#USE "aport.tsr" -- apporticrment structures
VAL INT node. id IS 2:

[5] [2]CHAN OF ANY links :

CHAN OF ANY consume.link IS links[4]

PRI PAR

ecs.kernel (links, node.id,
count .node, count.size,
node. link [node. id])
consurer (consume . link, in, out)

137

v

"4.\._'.-‘.. oY \-_.- n ‘-'\' R ‘_.,_‘--\. A A .'4._".1 NUPALY ,--:...— TR ORI R ‘--'\'.,'\"_"--.‘v':\'. \.\"-,\-:\

Cary
-‘

At et
e o

o1
- 5
Ll

Pt
P

" 7
,g. o

R Sy

>

XN IR
l—":‘v ‘:A

p a2
R XL LA

e

3 S
Y M

2

als

“x "p°

LT R Py
‘!‘Q'- A .' T L

DET.

L Cart

LY S A0 S e LN 0 et Paoa™)on'd e\t A ¢ a0 e e gy i a by
APPENDIX E
ED DE FOR T ME -PASSING ABSTRACT

TERFA IBRAR

SYMBOLIC CONSTANTS

{{{
{{
{{{

LIB
Library ID
VAL declarations

useful symbolic constants

VAL ELSE IS TRUE :
VAL NIL Is -1 :
VAL SENDER Is 0 :
VAL OUTPUT IS 0 :
VAL RECEIVER IS 1:
VAL INPUT IS 1:
1}
{{{ system limits
-- define the maximm cammnications data array size
VAL MAX .MESSAGE.SIZE IS 1024 :
— define the maximm mmber of system nodes
VAL MAX .NCDES IS 16 :
— define the maximm mmber of glcbal channels
VAL MAX.CHANS IS 256 :
~ define the mazimm number of chamnels per node
VAL MAX.PROC.PER.NCDE IS 40 :
-- define the mazimm muber of processes per node
VAL MAX.CHAN.PER.NCDE IS 40 :
}H
{{{ packet tags used during initialization
VAL INIT.START IS 1:
VAL START.ACK Is 2:
VAL INIT.DATA IS 3:
VAL DATA.ACK IS 4 :
VAL INIT.STOP IS 5:
VAL STOP .ACK IS 6 :
VAL INIT.QUIT IS 9:
P}
{{{ packet tags used during cammnication
VAL RECEIVER.READY s 7 :
VAL SEND IS 8 :
138
T ST T e T e R R A s S, T . A A A D R Y e s g oy

LS " "]

YA

e, Wy o v L)
A S AR
A

A ety .‘r ‘r' .

M-

«
-

v %S %W

L

.

T KEYY

.fl,l' MY

R LA LAY A A A L W L LY N O N U YN LY W LSOO AN Y N O T A TN O O O B 08 0 gat eal’ "2 Ba® Ba¥ 020 90’ 102" 02" Ba" B U $s* o-u-.-.-‘...‘
(W)

)
!
)
4
04
e
11} Vi
1) St
1H RJs
[
lJ
B. KERNEL PROCEDURE by
;
PROC csp.kernel (VAL INT node. id, } "
VAL []INT node. link, -
VAL (] (2]INT chan.map, .
(JCHAN CF ANY loc.chan) : \
« (A
Faxt:
{{{ description g
—— This procedure is the distributed kernel for a message passing .
—— based model programming interface. This procedure should be !
-- executed in parallel with application program modules using the
— interface. This procedure should be run at high priority and ul
-— the application modules run at low priority. 1::ﬁ
3%} W)
N
\)
{{{ libraries !
#USE "cspsynb.tsc" 3
« ¥
P} >
{{{ declarations o
{{{ local abbreviations o
VAL INT no.h.links IS 4 : I
VAL INT no.s.links IS SIZE chan.map : 2
* VAL INT no.l.chan IS8 SIZE chan.map : My
VAL INT no.links IS no.h.links + no.s.links : [0
VAL INT mum.nodes IS SIZE node.link : &
P11 y
{{{ channel declaration and placement '
[no.h.links*2]CHAN OF ANY hard.links: 3
PLACE hard.links AT 0 :
's‘
[MAX .CHAN .PER.NCDE] [2JCHAN OF ANY links: (o
1} v
{{{ comunications data structures g A
-~ definition of the commnications header parts ~
(31INT header : '
INT header.action.code IS header (0] R
INT header.to.ncde 1S header (1] N 'l
INT header.gchan 1s header[2] N
Gk
I-
-~ definition of the communications packet data segment » ,"
INT data.size : "
[(MAX .MESSAGE .SIZE]BYTE data.array : 9
HH -
{{{ channel mapping data structures et
-~ kernel data structures for cammmnications routing and -:;-i
~~ management ")
[MAX.CHANS] (2] INT gchan.node, .\ .
[)
[}
139 T
ol
\ \J
[2
""-
oa

§
D
¥
\
¥

QS) ad Ve v, p R

Cal

»,

L%

W,

.
-
'
8

7

CariE 8!

[MAX .CHANS] INT

14}
11}

{{{
£

gchan.lchan :
lchan.gchan :

procedures
PROC get.local(local, return)

PROC get.local (CHAN OF ANY local, return)

i

JH}

description

This procedure broadcasts local channel map data
to all nodes for network global structure
initialization

-~

{{{ declarations

—- for receiving acknowledge of remote broadcast
INT acknowledge :

1}

SEQ

TS AN

-
% e

{{{ 'vPrradcast start signals
— QOpen a path to all nodes in the system.
-— Intemmediate nodes receiving these start
- tokens and relaying them will not shut-down
— until a corresponding stop token is received.
SEQ to.node = 0 FOR num.nodes
IF
to.node < node.id
SEQ
local ! [INIT.START, to.nocde, node.id]; 0
return ? acknowledge
ELSE
SKIP
}H}
{{{ broadcast all local link data
— scan the channel map and build the local structures
SEQ chan.no = 0 FOR no.l.chan
{{{ local abbreviations
VAL []JINT global.ident
VAL [IBYTE ident.array
VAL INT glckal.chan.id
VAL INT chan.mode
VAL INT link.no
1Hi
SEQ
-- build local data structures
gchan.node (glaobal.chan.id] [chan.mode] := node.id
gchan.lchan(global.chan.id] [chan.mode] := link.no
lchan.gchan[link.no] := glcbal.chan.id
~-— broadcast to other nodes
SEQ to.node = 0 FOR num.nodes
IF

chan.map[chan.no]
chan.map{chan.no]
glcbal.ident {0]
glabal.ident [1]
chan.no + no.h.links :

£

[T N

‘l ‘l

I

’, -) - - - . - - - -~ -
T T Ay O T A e R S Ll e
et i e

to.node < node.id

SEQ
local ! [INIT.DATA, to.node, node.id]; 8::ident.array
return ? acknowledge
ELSE
SKIP

b}

{{{ broadcast done signals

-— notify other nodes that done with init transmission
SEQ to.node = 0 FCR num.nodes

IF
to.node < node.id
SEQ
local ! [INIT.STOP, to.node, node.id]; 0
return ? acknowledge
ELSE
SKIP

1}

{{{ send local quit signal

- notify that local transmissions over
local ! [INIT.QUIT, node.id,node.id]; 0
128

11}
{{{ PRCC get.ramote(remote, return)

PRCC get.ramote (CHAN OF ANY remote, return)

{{{ description

— This procedure inputs remote nodes’ channel map data
-— to all nodes for network global structure

— initialization

}H}

{{{ local declarations
[3]INT header :

INT init.code Is header[0]
INT to.node.id IS header (1]
INT fram.node. id IS header (2]
INT data.size :

[2]INT global.ident :

(1BYTE ident.array RETYPES global.ident :
INT glaobal.chan.id IS global.ident [0]
INT chan.mode IS global.ident [1]
INT quit.count :

1}

SEQ

{{{ initialize
— will receive at least 2 messages from every other node

141

e :\,:-'_:\._'h,'.(‘-'.\ _:.f:.'_-.{-.,

.,\‘,'

AN

XXX

—

s

P

-

-
. J
- -

s

CE LA T N -
£_ A2
L w e A

[uef ol

quit.count := 2*(mum.nodes - 1)
1
WHILE quit.count > 0
ALT link.no = 0 FOR no.h.links
-— get a message from scmewhere
links[link.no] [INPUT] ? header; data.size::ident.array
IF

{{{ for my node, process it
to.node.id = node.id
SEQ
to.node.id := fram.node.id
-- categorize and act on message
IF
{{{ start message
init.code = INIT.START
SEQ
-- acknowledge message to remote node
init.code := START.ACK
remote ! header; data.size::ident.array
11}
{{{ start ack
init.code = START.ACK
-- let local process know the ack rec'd
return ! NIL
bhi
{{{ data message
init.code = INIT.DATA
SEQ :
gchan.node [global.chan.id] [chan.mode] := fram.node.id
— acknowledge message to remote node
init.code := DATA.XCK
remote ! header; data.size::ident.array
}H)
{({{ data ack
init.code = DATA.ACK
— let local process know the ack rec'd
return ! NIL
b}
{{{ stop rmessage
init.code = INIT.STOP
SEQ
-- one less message to get fram a remote node
quit.count := quit.count - 1
-- acknowledge message to remcote node
init.code := STOP.ACK
remote ! header; data.size::ident.array
11}
{({{ stop ack
init.code = STOP.ACK
SEQ
-— one less message to get fram a remote node
quit.count := quit.count - 1
—- let local process know the ack rec'd
return ! NIL
b}

142

AL ST e,

Pola s

|

"\ r. -’P 1,.-

TR AN
r‘l’ S AL
- -

P2

at R W
RO R

'\?
B
Ay A%

[2 T ¥
o f""{ [y

,,
P4
5% 5

e
Sl o

+
w

T A RO XM YR WL L W U e W U AR O O R O Y M YW AU N MW LW 8y ghy, N 0 5ah Bad & OO N aN e Wt e SR T G S AR
s X
7
o 0
(J
|
}1} s
{{{ for a different node, forward it f‘
ELSE ¢
SEQ ',
remote ! header; data.size::ident.array .
IF e
init.code = INIT.START X
-—- reserve a path for the sender
quit.count := quit.count + 1 N
init.code = START.ACK 4
SKIP
init.code = INIT.DATA By
SKIP ot
init.code = DATA.ACK e
SKTP yﬁ
init.code = INIT.STOP wa
SKIP "
init.code = STOP.ACK e
—- done with pass-thru reservation o Y
quit.count := quit.count - 1 oo
ELSE o
SKIP !
1} Cas
{{{ send local quit signal .‘
— done with remote receives k&L
remote ! [INLT.QUIT, node.id, node.id]; 0]
[)

11}

LY

- 1}

.

{{{ PROC multiplex(local, remote) 5]

N

PROC multiplex (CHAN OF ANY local, remote) o

N

{{{ description ’E{'
-— This procedure multiplexes locally generated initialization 3

-~ messages and 'pass-through' initilization messages onto oy
-~ the hardware cammunication links oy

W

1} e

P

I\ Y

{{{ local declarations S0
-- packet header definition ®

[3]1INT header : v

INT init.code 1S header[0] oy
INT to.node.id 18 header (1] ;:‘;';
«,N

-- init packet data :::
INT data.size : i

[2]INT global.ident : L P
(1BYTE ident .array RETYPES global.ident : x':

':~' d

-- local flags :._.\

BOOL local.done, oy

f::q'

143

P g

3
7
o

.
>

L]
L
- .

r

R A D A A TR T R AN AR

BRTLR AR WG W

Y 1,\’\-’1'. I.‘

2% Hab dab (2% Ua® dat. int So¢ ot et 0ol e ¥ fe® a? $2% 0% 2t 0a¥ a® bav ot § 0 gt §ob Bl a0 Ba¥ o0 ¥ Be0 020" 220 2a8 A0 b

remote.done :
1}

SEQ
{{{ initialize
local.done := FALSE
remote.done := FALSE
P
WHILE (NOT local.done) OR (NOT remote.done)
PRI ALT
{{{ remwtely generated messages
(NCT remote.done) & remote ? header; data.size::ident.array
IFr
init.code = INIT.QUIT
remote.done := TRUE
ELSE
links [nocde. link{to.node.id]] [QUTPUT] ! header:;
data.size::ident.array
1}
{{{ locally generated messages
(NCT local.done) & local ? header; data.size::ident.array
Ir
init.code = INIT.QUIT
local.done := TRUE
EILSE
links[node. link (to.node.id]] [OUTPUT] ! header:;
data.size::ident.array
1

P}
{{{ PRCC map.out (local.link,local.chan)

PRCC map.out ([2]CHAN OF ANY local.link,
CHAN CF ANY local.chan)

{{{ description

——- Perform the data transfers needed to connect the output
-— end of a global channel to the receiving local channel
11}

{{{ declarations

-- alternate na.ee for the local bidirectional channel
CHAN OF ANY link.in IS local.link(0)

CHAN OF ANY link.out IS local.link[1]

-- for receiving signal to start transmission

INT any :
-- data structure for transmitted message
INT data.size :
[MAX .MESSAGE . SIZE] BYTE data.array :
b1}
144
.~“.r '-"'\J"'\'\Nf'-'.'f.'.Ffff‘-?f‘-'-',f:f.f‘

N e Y Y s-_,.\',_,, w.‘-),w.

S A A f

et

0L W N

LY
&

AL

AT
e+ _ 5 .
-

B

%

Ay

eSS

Sxoxs

¥

A Py ?
NP AT

BT e A LA U

1y 479 AP kip T4

T N T . 5a% 00800 ak 0 g0r | e - gav

WHILE TRUE
SEQ

PAR
-- know that receiver is ready to receive
link.in ? any
-- get the transmitted data
local.chan ? data.size::data.array

-- send the data via the kernel

link.out ! SEND; data.size::data.array

11}
{{{ PROC map.in (local.link,local.chan)

PROC map.in(({2)CHAN OF ANY local.link,
CHAN OF ANY local.chan)

{{{ description

-~ Perfomm the data transfers needed to connect the input
— end of a global chanmnel to the transmitting local chamnel
1}

{{{ declarations

-- alternate names for the local channels
CHAN OF ANY link.in IS local.link[0]
CHAN OF ANY link.out IS 1local.link{l]

- data structure for received data

INT data.size :
[MAX .MESSAGE . SIZE] BYTE data.array :
P}
WHILE TRUE

SEQ

-- identify to the kernel that the process is ready to receive
link.out ! RECEIVER.RERDY; 0

-- receive the transmitted data fram the kernel

link.in ? data.size::data.array

-~ send data to the application

local.chan ! data.size::data.array

}H)
{{{ PROC buffer.link{(chan.in,chan.out)

PROC buffer.link (CHAN CF ANY in.link, out.link)

{{{ description

—- This procedure provides a buffer for hard link input.

—-— This buffer increases the overall throughput of the node.
11}

145

Vs
P

L r_»

)‘ » u -*q n._'-. et .«. -.f. " ...’I.".",'.-{ ' -* , I.'f -’ 'v'("ﬂ.f"l"" ~-~-..- o' .' 4' '\‘i‘”' AR T e Rt -.-v LR ~'~

¥
~
,‘\-"
{{{ declarations 28
{MAX .MESSAGE . SIZE] BYTE data.array.0, N
data.array.l : !
[3)INT header.0, "9
header.l : font,
INT data.size.0, ‘f'
data.size.l : A
) 5
sz %
in.link ? header.0; data.size.0::data.array.0 ™
WHILE TRUE ot
SEQ o
PAR Q‘C
out.link ! header.(0; data.size.0::data.array.0
in.link ? header.l; data.size.l::data.array.l L
PAR -,;-
out.link ! header.l; data.size.l::data.array.l Xy
in.link ? header.0; data.size.0::data.array.0 z‘::
h
s
v
3y ’
{{{ PROC build packet (link.no) n g
PROC build.packet (VAL INT link.no) S
v 'Y
AL
{{{ description i
-~ Based on the local channel sending the message to the kernel,
-~ construct an intemnode camminications packet. S
133)
SEQ L
— identify the global channel being used v
header.gchan := lchan.gchan(link.no] -
— £find the node to which the packet is to be routed o
¥ N
header.action.code = RECEIVER.READY vy
header.to.node := gchan.node [header.gchan] [CUTPUT] N
header.action.code = SEND e
header.to.node := gchan.node[header.gchan] [INPUT] »
ELSE Ry
header.to.node := node.id fc-'
o
»
v
o
g !
[{{ PROC process.packet (link.no) ,‘
PROC process.packet (VAL INT link.no) \.‘
{{l description oo
o
. o
146 oA
n'“ A
-
e,
e
o :!

n",\,\,"{ -{\',-"w,.-{-"n.-'.-’n’_-{-'_- N A AL N ‘I’(‘\,""'f\" N~ TN .;_'..; T NI MR RN R T
RSN ly W L T, 3%, (0%, WY 1% A TR 4% x . Ly , AR RO,

o v B L0 LA LN

This procedure performs communications routing and maintains
synchronization between the sending and receiving processes
by sequencing communications between the local and remote
processes.

IF
{{{ packet for this node
header.to.node = node.id
IF
header.action.code = RECEIVER.RERDY
— let the sender know that receiver is ready
links [gchan. lchan (header.gchan] [OUTPUT]] [CUTPUT] ! SEND
header.action.code = SEND
— pass on the data packet to its destination
links {gchan.lchan [header .gchan] [INPUT]] [QUTPUT] !
data.size::data.array
HH}
{{{ packet for other node - forward it
ELSE
links{node.link (header.to.node]] [OUTPUT] ! header; data.size::data.array
1}

11}
1

PAR
{{{ buffer hardware links
PAR link.no = 0 FOR no.h.links
PAR
buffer.link (hard.links(link.no + no.h.links], links([link.no] (INPUT])
buffer.link (links{link.no] [OUTPUT], hard.links([link.no])
11}
SEQ
{{{ initialization
{{{ initialize kernel data structures
SEQ i = 0 FOR MAX.CHANS
SEQ
lchan.gchan{i] := NIL
gchan.node[i] := [NIL,NIL]
gchan.lchan{i] := [NIL,NIL]
1}
{{{ query local channels to build data structures
{{{ declare local channels for initialization
CHAN OF ANY local,
remote,
return

e

"i’-‘.-"
Lo,

SN

11}

PAR
get . local (local, return)
get . remote (remote, return)
multiplex (local, remote)

w F.
fl“l Ay

«r
2,

sin® gsseed®

S
[Sk]
R

A N I I IR AL I L L P VLY AL I RS ' - T T T ™ AT e M AT AT N AN Rk " m . VA" ;e
" ool A o T A AT A A A A R Y

A |_,l.g NG W U ot e, BP0 8% W Ny ¥

1}

PAR

\ {{{ build mapping processes
-~ Create the chamnel controller processes to connect the
—- local channels to global channel ends

&
: b
O

W
| ; {{{ local declarations
. :_' TIMER clock:
w3 INT time:
3 1
}‘. SEQ
. {{{ wait for init messages clear the network

-— This is a cobble to correct a problem with one
-- node campletinig initialization and sending a 'real'

Cn -- message that is not properly handled by a node
fo™, -- that has not yet been initialized. Just wait for
' -- a long time for the initilization messages to
-- clear the network

™ clock ? time ‘
‘o clock ? AFTER time + 5000000 —— wait 5 seconds i
o~ FHi

N PAR chan.no = 0 FOR MAX.CHAY.PER.NODE
s IF —- this channel is among those declared

-2 chan.no < no.l.chan

IF -- input or output global channel end
chan.map(chan.no] [1] = INPUT

o map.in(links[chan.no+no.h.1links], loc.chan[chan.no))
L9 ELSE
::: map.out (1inks [chan.no+no.h.links}, loc.chan[chan.no])

. ELSE

. SKIP
s b} .
- {{{ monitor comunications)
- -- accept input from channel controllers or from hard links :
o {{{ local declarations .
B —- The communications monitoring procedure uses a 'fair' implementation
‘_ — of the ALT structure. In general, it provides that if a commnication

’ -- was Jjust received from one of several channels, that channel will have
>4 — the lowest priority for the next execution of the ALT. In this way, 3
"’f- -- no single communications channel cam 'starve' access to the kernel (
7 -~ from the other communications channels. The variables defined

ﬁ -— below are used to track the last communicating channel for this

- -- 'fair' ALT. Note that hard and soft links are treated separately.
b - INT last.h, last.s: h
~ 11)
i~ SEQ !

{{{ initialization i

‘n last.s := 0

X last.h = 0

) 11}

> WHILE TRUE) X
0 PRI ALT ;
> {{{ handle external hardware links

N ALT link.no = 0 FOR no.h.links

"

148

LS
N = - - -

f“ NP YR Y R R TP A e

T

o

A A ST RSV I NN TN
- s

links[(link.no + last.h)\no.h.links] [INPUT] ? header;
I data.size::data.array
| SEQ
process.packet ((link.no + last.h)\no.h.links)
last.h := (no.h.links - 1) + link.no

11}
{{{ handle local soft links
ALT i = 0 FOR no.s.links
links ({1 + last.s)\no.s.links) + no.h.links] [INPUT] ?
header.action.code:
data.size::data.array
VAL INT link.no IS ((i + last.s)\no.s.links) + no.h.links :
SEQ
build.packet (1ink.no)
process.packet (link.no)
last.s := i + (no.s.links ~ 1)
11}
11}

149

" N
R
e,
K
[

"
»
-
.
»
.
«
.
.
z
.

' \f '-.-"(.".;" W . N ;\- " ":"('~-\""" W " '- '-;'-~ ‘-';"‘.."4".:‘-'-'.'-‘- -'. ':‘.. ¢ ‘--_.:'\':‘y-.'v’:'\-‘-'\‘:“- o

L

oV L

i

3

) e
'E"r Y]

L r
Pl

x

'

Pl

P

[}
-

. N
v
v ¢

LACNES
P
S

4

Cad

Y YY Y. X ¥
DAL
4 oo %

e,

57

5-'&I&r‘l .

il
7
* ’

'y

5“'1,-,

-
A
o

g

7

Iy

Ry
MY

roa; =
e Lo

v

P "
b4 <>

) Pyd
2y b

i b T J
.
-

N

...

<

ity
. . ..'u

*es
b o

Le

[

e

2

N gh gta pth gby 288 ata gle ¢ a¥

APPENDIX F

AMPLE P ING THE AGE-PASSI INTERFACE

A. DESCRIPTION

This appendix provides an example of the methodology employed
to write a program using the message-passing interface developed for
this thesis. The programming example selected is the same bounded
buffer problem used in Appendix D to demonstrate programming with
the shared-memory interface. This problem consisted of two produc-

ers and one consumer with a bounded buffer or queue between them.

B. MODULARIZATION

The modularization of the bounded buffer problem for program-
ming under the message-passing interface is similar to that specified
for programming with the shared memory interface. As with the
shared memory modularization, the producers and consumer are indi-
vidual modules. However, with the shared memory interface, the
Buffer between the producers and consumer is a natural consequence
of the memory shared between the modules. In the message-passing
scheme, however, this buffer must be defined and coded as a separate
module.

1. Producers

Each instantiation of this module generates a continuous

stream of data elements at a specified average rate with some charac-

150

Wb .D.A -l‘.) '- .. .I'. ¥, l‘- . . .| \J" MAASACADENIM

b
- -

LRI

b o -’

SN L
lv %

2% DY P PR
g4 4
5,’-)'!'.{,_‘-

vt ®

Y.:l
x

S Wl IFES AR WPLEEN AN | "".';r
e L .-s&\,':,':\-,'-_,i{ NIYWN ':‘_5;‘ '_}

Y
)
Sy

*ﬁ
e AR "w"V"-I' T O 'M‘.:\-"_;-f J‘ Vo 'J‘,;J'_:I;f{.ﬁmc-‘ '*_:-(.;J‘,;-"{-‘ -I'_:-I'N\l"_;-",:-",'\"f\‘

teristic random variation in the rate. The data elements produced are

output to a buffering process via a global communications channel.

2.

from a global communications channel. Data elements input are con-
sumed at a specified average rate with some characteristic random
variation in the rate. The average rate for the single consumer should
be at least equal to the total of the producer’s rates. If not and the
consumer can not keep up with the producers, the buffer will eventu-
ally fill and the producers will be forced to remain idle while waiting
for the consumer.

3. Buffer

and queues the input data elements for output on a third global com-
munications channel. Internally, this buffer should exhibit first-in,

first-out queue characteristics.

C MODULE CODING
The code for each of the program modules should then be devel-
oped. The following sections provide an abbreviated listing of the

code for the modules.

1.

LGS SN AN MG AN

This module continuously attempts to input data elements

This module inputs communications from two global channels

oy
Producers k
2

Yo \-..;."4,.". A . ~; /"-fl'v '.",.—’ -‘u " “,f‘l/'%('-f"l'.-’.\f\f\r\-".'f: v-.'r -‘- LI ..- AT AL TAN At
Aatnl Ldl Rad o dhinfll il o . K falk RKal sl 9 9.

ons €r

@ F

’ a
Py

o

G

! -
Lt

-

3

PROC producer (CHAN OF ANY output)

»

#USE "\csplib\cspproc.tsr" -- the interface library
#USE "globals.tsr" -- global constants

‘t.' (‘:' ._.i -

S

'-{'
'r’.
e\
@

151

e

0 Sp VYAl Salita i R et vag Yat A SR S e Y 0 Vel L D A e " LR L WO VUN St et a0 b g0 80 38 B0 .0 8 A 00 0 0" & - cag s Yoral

B
K
]
'o
e '
3: [data.element .size]BYTE data.element :)
kb)
o
) WHILE TRUE
K SEQ
::: -- insert code for producing a data element ‘
R
! output ! data.element
z:.,
! ,
&
by 2. Consumer ‘
P PROC consumer (CHAN CF ANY input)
C A
\ #USE "\csplib\cspproc.tsr" -- the interface library
ho #USE “"globals.tsr" — global constants ‘
DOy .‘
' [data.element .size]BYTE data.element :
i
WHILE TRUE
¥ s ;
; .: input ? data.element '
e
R - insert code to consume data element
-; .
¢ 3. Buffer
o .
(X
' PROC buffer (CHAN OF ANY buff.in.l, buff.in.2, buff.out)
.
Y
- — Note, procedure written in a manner to illustrate same :
: — features of the OCCAM programming language; not for ;
;\‘. — efficiency A
#USE "\csplib\cspproc.tsr" -- the interface library
#USE "globals.tsr" -—- global constants
'E [buffer.size]CHAN OF ANY buff.chan : ,
W
’ 3
[PAR
)) -- accept input from either producer
[[data.element .size]BYTE data.elarent :
‘, WHILE TRUE J
; 4 ALT \
L) buff.in.l ? data.element ;
YW buff.chan[0] ! data.element -
e 152
o
"
N
LY
A

oA o R G T R RN
A e \{_' L s ". T {a .\('_'.A\(.r -7
B Dot Sl Oeabhiaflad A i)

)
e e kN mm ey a mmep
L o O R T

o ¥ gat ga? (a¥ 2V gy o8] O Wa® ot Qg 220 E0 fa0 “fat fal Fab yat fo 8 ol o "Bt g ¥ a8 A Ba¥ ot Put $a® dab B2t 3.0 ol hal s, R R KR O

buff.in.2 ? data.element
buff.chan(0] ! data.element

-- buffer the input
PAR i = 0 FOR buffer.size - 1
[data.element.size]BYTE data.element :
WHILE TRUE
SEQ
buff.chan{i] ? data.element
buff.chan(i + 1] ! data.element

— send from the buffer
[data.element .31ze]BYTE data.element :

WHILE TRUE

SEQ
buff.chan[buffer.size - 1] ? data.elemrent
buff.out ! data.element

D. APPORTIONMENT OF MODULES

As is done for the shared-memory interface, the apportionment of
modules for the message-passing interface is done in two different
ways. The first way will assign all modules to a single Transputer. The

- second way will distribute the modules on four different Transputers.

1. Single Transputer

Library aport.tsr

#USE "globals.tsr" -- glohal constants

— symbolic constants for glcbal channels
VAL prol.global IS 0 :
VAL pro2.glcbal IS 1:
VAL con.glcbal Is 2 :

-— network adjacency matrix to match particular
— physical configuration. This matrix matches
— a clockwise ring on a B003 board.

VAL node.link IS [10,2,2,2],
2,0,2,21,
[2!210l2]l
(2,2,2,0]]
PROC nodeQ () -—- procedure to run on Transputer 0
153

A I T N I I A e N O A N N o i S e e N R P A B AT MR AT AN T
A A A Tl ¥ AL Loar KL A . N, Sa L & 3 e A O S B

5

s

o

0y

'

€ CIT A X
gL
Lol s I

e
S

r"'
v

Pt
]
2
g

P
"-":F).),v' P

-(‘-u. 'y
't e

Fd
05N

NN
* &
S 5

o,
i

A e
it 2

-~

4

i K/

LV A S
st s

A,

S;&\'

'

N ""‘)‘FY L
y 5o}

o

T T v
IS..J
N e

v -
l'-r"

LT

§

g LAY ™

¥

A

el

19, T -.’\
)

At et Ve At 2 way gl " ''.‘.. -.....‘ R T R R OO TN TN X N -." . ' ', ..'.A t.ll LR
#USE "\csplib\cspproc.tsr” -- the interface library
#USE "procs.tsr" -- library of procedures
#USE "aport.tsr" -- apportionment structures
VAL INT node. id IS 0 :
VAL [][2]INT chan.map IS {[prol.glcbal, SENDER],

[prol.global,RECEIVER],
[pro2.global, SENDER],
[pro2.global, RECEIVER],
[con.global, SENDER],
[con.glabal; RECEIVER]]

[SIZE chan.map]CHAN OF ANY loc.chan :

CHAN CF ANY pro.one.out
CHAN OF ANY buff.in.one
CHAN CF ANY pro.two.out
CHAN OF ANY buff.in.two
CHAN OF ANY buff.out
CHAN OF ANY con.in

PRI PAR

abbreviations for convenience only

Is
Is
Is
Is
Is
18

loc.chan{0]
loc.chan{l]
loc.chan{2]
loc.chan[3]
loc.chan(4]
loc.chan{5]

csp.kernel (node.id, node.link[node.id],

chan.map, loc.chan)
PAR
producer (pro.one.out)
producer (pro.two.out)

buffer(buff.in.one, buff.in.two, buff.out)

consurer (con.in)

2. Four Transputers

Library aport.tsr
#USE "globals.tsr" -- global constants
— symbolic constants for global channels
VAL prol.global IS 0 :
VAL pro2.global IS 1
VAL con.global Is 2 :
— network adjacency matrix to match particular
— physical configuration. This matrix matches
— a clockwise ring on a B003 board.
VAL node.link Is [[0,2,2,2],

(2,0,2,21,

(2,2,0,2],

[2,2,2,0])

154
A TN N N TN T R R s N A T N L PN AT O R AT A\

2y

g

S oy

A o a'_\'_ v

1
.

=i Al
e

x
'

SRS O T

)

.'-'t‘

X

Y
-

"-" L2 W 1
A o
oo

"2 %

el

[k
Ty
o

o s

oA - A 4

L T T e
Pt st o

v A ’3:

)

» -
Pl 4

x

-y

T,

R SR

PROC nodel () -~ procedure to

run on Transputer 0

#USE "\csplib\cspproc.tsc"
#USE "procs.tsr"
#USE "aport.tsr"

node.id
chan.map

VAL INT
VAL {][2]INT

the interface library
library of procedures
apporticrment structures

IS 0 :
IS [[prol.glcbal, SENDER]]

[SIZE chan.map]CHAN OF ANY loc.chan :

CHAN CF ANY

PRI PAR

ahbreviation for convenience only
pro.one.out

IS loc.chan([0]

csp.kernel (node.id, node.link(node.id],
chan.map, loc.chan)

producer (pro.one.out)

PROC nodel() —

procedure to run

on Transputer 1

#USE "\csplib\cspproc.tsr”
#USE "procs.tsr"
#USE "aport.tsr"

VAL INT
VAL []{2]INT

node.id
chan.map

the interface library
library of procedures
apporticnment structures

s 1:
IS [[pro2.global,SENDER]]:

[SIZE chan.map]CHAN OF ANY loc.chan :

CHAN CF ANY

PRI PAR

abbreviations for convenience only
pro.two.out

IS loc.chan(0]

csp.kernel (node.id, node.link[node.id],
chan.map, loc.chan)

producer (pro.two.out)

PROC node2 () ——

procedure to run on Transputer 2

#USE "\csplib\cspproc.tsrc”
#USE "procs.tsr”
#USE "aport.tsr"

VAL INT node. id
VAL [] [2]INT chan.map
155

AN

ARG AR TR TN RN

the interface library
library of procedures
apportiorment structures

s 2 :
IS [(prol.global,RECEIVER],
[pro2.global, RECEIVER],

LS.

ey e S A S ot

AR S

y g

v v
®

.
Y
!

2

{0 e
Lol S AL
s

{_(1‘1’(‘- L
e T O]
PR,

2
&Elé/zi i‘

£ A,
i

o

Kt

wd :-i
5]
-
a
| 4
”
o
(con.glcbal, SENDER]] : ;.\',
% \
La,
(SIZE chan.map]CHAN OF ANY loc.chan : ol
-- abbreviations for convenience only ':‘»"
CHAN COF ANY buff.in.one IS loc.chan[0Q]
CHAN OF ANY buff.in.two IS loc.chan(l] : p)
CHAN OF ANY buff .out 1S loc.chan(2] : VN
0
PRI PAR s,
csp.kernel (node.id, node.link(node.id], A
chan.map, loc.chan) LX)
buffer (buff.in.one, buff.in.two, buff.out) .
N
Pt
i 4
s
PROC node3() — procedure to run on Transputer 3 i
)
#USE "\csplib\cspproc.tsr" -- the interface library)
#USE "procs.tsc" ~— library of procedures o
#USE "aport.tsr” -- apportiomment structures g%
¢
VAL INT node.id IS 3 : TF
VAL [][2)INT chan.map IS [lcon.global, RECEIVER]] L
[SIZE chan.map]CHAN OF ANY loc.chan : 3
-- abbreviations for convenience only o~
CHAN OF ANY con.in IS loc.chan(0] .;-:
v
PRI PAR ;
csp.kermel (node.id, node.link[node.id], M -
chan.map, loc.chan) :.:-'
consumer (con. in) 7
l\]
° l\ (]
L] .'t
Rt
=)
oo
»
N
R
:r
v
.,
:«-
7
..‘-:..
T
.:_,.
156 by
i
ALY
S
S

!
b
T

-

L]
XS

a

B

»

(P a Pt
A WV AV, TRV ‘h‘.

R LA P LT I L

LIST OF REFERENCES

[Br87] Bryant, Gregory R., Transputer Instruction Set Disassembler,
August 1987.

[Ga86] Garret, D. R., A Software System Implementation Guide and
System Prototyping Facility for the MCORTEX Executive on the Real
Time Cluster, M.S. Thesis, December 1986, Naval Postgraduate
School, Monterey, California.

[Ha87] Hart, Simon J., Design, Implementation, and Evaluation Of A
Virtual Shared Memory System In A Multi-Transputer Network, M.S.
Thesis, December 1987, Naval Postgraduate School, Monterey,
California.

[Ho79] Hoare, C. A. R., “Communicating Sequential Processes,”
Communications of the ACM, vol. 21, no. 8, pp. 666-677, August 1978.

[In868] Product Information The Transputer Family, March 1986,
INMOS Ltd., Bristol, United Kingdom.

[In87a] Transputer Development System 2.0, Programming Interface,
April 1987, INMOS Ltd., Bristol, United Kingdom.

[In87b] Transputer Reference Manual, January 1987, INMOS Ltd.,
Bristol, United Kingdom.

[In87c] T800 Preliminary Data Sheet, INMOS Ltd., 1987, Bristol,
United Kingdom.

[In87d] The Transputer Instruction Set—A Compiler Writer's Guide,
May 1987, INMOS Ltd., Bristol, United Kingdom.

[In87e] T424 Transputer Reference Manual, INMOS Ltd., 1987,
Bristol, United Kingdom.

[Pe88] Discussion with Mr. Laurie Pegum, April 1988, INMOS Ltd.,
Colorado Springs, Colorado

[PoMa87] A Tutorial Introduction to OCCAM Including Language
Definition, March 1987, INMOS LTD., Bristol, United Kingdom.

157

- ASY

.)
-.’) Wl ¥ ‘.J‘p('-':"V. o A: ,':(4 }. 'y .'f & '('..;f [, f’.ﬁ' r,‘-v_.‘t_'q " ,'-‘ ‘p “u ,‘r ~ , ,’- nl'- n? At ~v \1~’ E
- Y, A . B N X g X L A A K o i o o " K ¥ AN, . .

Ly
= %)

o ¢
-

-—‘; .

By ',! T =

B ™

T SRR RS el

[Re85] Ingres Reference Manual, 1985, Relational Technology Inc.,
Alameda, California.

[ReKa79] Reed, D. P., and Kanodia, R. K., “Synchronization with
Event Counts and Sequencers,” Communications of the ACM, vol. 22,
no. 2, pp. 115-123, February 1979.

[Va87] Vanni, Filho J., Test and Evaluation of the Transputer in a
Multi-Transputer Configuration, M.S. Thesis, June 1987, Naval Post-
graduate School, Monterey, California.

279,00 000"

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Dr. Uno R. Kodres, Code 52Kr
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Major Richard A. Adams, USAF, Code 52Ad
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Daniel Green, Code 20F
Naval Surface Weapons Center
Dahlgren, VA 22449

Jerry Gaston. Code N24
Naval Surface Weapons Center
Dahlgren, VA 22449

Captain J. Hood, USN

PMS 400B5

Naval Sea Systems Command
Washington, DC 20362

159

.......

No. Copies

s A A
[.
[v‘) ¢ ‘:’_-'\' v‘f :.. p

1]
x

{(‘:'é{..,ff' Ztle
=5 i S

-

P AP
- X

e

NN
PO

';."? z

[T 2 '_ y

3 Ty ¥ 0 The)
® Ly
LTSN

A R]
r'.-".v,‘;

v

At
REGEAERE LS
RARAASN

l'.-" - &
voTde
P

2
A B0
P

T I I I R W% 2 M A M ¥ g ® e " A e TN » T T T T T L U R T T .
e O X b G I A i A GO R A AN AR S AR R AR AN

A OO N e A S Ut B o h

19,

P UR WS VN W U

10.

11.

12.

13.

14.

15.

15.

16.

........

RCA AEGIS Repository

RCA Corporation

Government Systems Division
Mail Stop 127-327
Moorestown, NJ 08057

Library (Code E33-05)
Naval Surface Weapons Center
Dahlgren, VA 22449

Dr. M. J. Gralia

Applied Physics Laboratory
Johns Hopkins Road
Laurel, MD 20702

Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

Lieutenant Commander G. R. Bryant, USN
Mare Island Naval Shipyard
Vallejo, CA 94592

Lieutenant Commander S. J. Hart
Royal Australian Navy

Combat Data Systems Centre

84 Maryborough Street
Fyshwick, ACT 2610
AUSTRALIA

AEGIS Modeling Laboratory, Code 52
Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943

Lieutenant W. R. Cloughley, USN

1448 47th Street
Sacramento, CA 95819

160

i Gy i,

L 4 <,
;'9"

@ 5"

L4

oy

Xy

[
e T
W=

Dot o ol
..l
272,

v
%
Pk s

o

g R e Tt
27 {'J")F
r“:’:fr'x'.lq

- [l ol i g | o o
ot AL
2L "l' 5%

xR R
® LAl A e ¥
PSRRI

RIFEIS

-
o
g d

